Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекции_РЭС / Лекция Методы анализа линейных цепей

.doc
Скачиваний:
254
Добавлен:
11.04.2015
Размер:
139.26 Кб
Скачать

9

Лекция «Методы анализа линейных цепей»

Линейные цепи состоят из пассивных и активных элементов, параметры которых не зависят от протекающих в них токов и приложенных к ним напряжений. Все электрические цепи, состоящие из сопротивлений, емкостей, индуктивностей и соединительных проводов, линейны.

C вязь между входным UВХ(t) = UВХ и выходным UВЫХ(t) = UВЫХ сигналами устанавливают с помощью дифференциального уравнения

Если цепь (далее часто четырехполюсник) линейна, то все коэффициенты

а0, a1,..., an и b0, b1,..., bm — постоянные вещественные числа.

Е сли UВХ(t) задан, то правая часть уравнения , которую условно обозначим через iВХ(t), является известной функцией. Анализ отклика линейной цепи на известное входное воздействие сводится при этом к известной в математике задаче решения линейного дифференциального уравнения n-го порядка с постоянными коэффициентами.

Порядок n этого уравнения в радиотехнике принято называть порядком линейной цепи (системы).

К линейным цепям (системам) применим принцип суперпозиции: выходной сигнал линейной цепи на суммарное воздействие нескольких входных источников равен алгебраической сумме откликов на воздействие (входной сигнал) каждого источника в отдельности.

где В — линейный оператор, характеризующий вид воздействия линейной цепи на входной сигнал.

Линейным системам свойственна еще и однородность (гомогенность), т. е. отклик системы на входной сигнал, усиленный в определенное число раз, будет усилен в то же число раз.

При анализе процессов в электрических цепях необходимо определить отклик цепи на входной сигнал в виде сигнала заданной формы. Отклик выражают в значениях напряжений u(t) и токов i(t) в разные моменты времени. При анализе воздействия сигналов на сложные по структуре цепи применяют следующие методы анализа:

  • классический;

  • частотный (спектральный);

  • операторный;

  • метод интеграла наложения.

Классический метод основан на составлении и решении дифференциальных уравнений и наиболее удобен для анализа прохождения импульсных сигналов через линейные цепи. Метод прост, нагляден, хорошо отражает физическую суть процессов. Очень сложен при анализе процессов и цепей выше третьего порядка. В этом случае удобнее применять спектральный и операторный методы или метод интеграла наложения.

Частотный (спектральный) метод. Оперирует с помощью параметра К(ω)- частотный коэффициент передачи.

В комплексном виде

Частотный коэффициент передачи (или просто коэффициент передачи)

Модуль коэффициента передачи К(ω) = |К(ω)| называют амплитудно- частотной характеристикой (АЧХ), а аргумент φ(ω)фазочастотной характеристикой (ФЧХ).

Полоса пропускания (рабочая полоса) — области частот, где модуль коэффициента передачи К(ω) становится не менее 1/(2)0,5 своего максимального значения. На границах полосы пропускания модуль коэффициента передачи по мощности, равный отношению выходной и входной мощностей, уменьшается в два раза.

Ширина полосы пропускания

ω = ωВ - ωН.

Для циклической частоты

Е сли на вход линейной цепи подается гармонический сигнал единичной амплитуды, имеющий комплексную аналитическую модель вида UВХ(t) = еjωt, то сигнал на ее выходе запишется как UВЫХ(t) = К(ω) еjωt . Подставляя эти выражения в (1), после несложных преобразований запишем К(ω) в форме дифференциального уравнения

Т .е. если коэффициенты постоянные то К(ω) представляет собой дробно-рациональную функцию переменной jω. При этом коэффициенты этой функции совпадают с коэффициентами дифференциального уравнения. С помощью частотного коэффициента передачи К(ω) можно определить сигнал на выходе линейного четырехполюсника. Пусть на входе линейного четырехполюсника с частотным коэффициентом передачи К(ω) действует непрерывный сигнал произвольной формы в виде напряжения UBX(t). Применив прямое преобразование Фурье

определим спектральную плотность входного сигнала SВХ(ω). Тогда спектральная плотность сигнала на выходе линейного четырехполюсника

П роведя обратное преобразование Фурье

от спектральной плотности, получим выходной сигнал

Операторный метод основан на замене оператора дифференцирования d/dt комплексным параметром р, который переводит анализ сигналов из временной области в область комплексных величин. Рассмотрим некоторый комплексный или вещественный аналоговый сигнал u(t), определенный при t≥0 и равный нулю в момент времени t =0. Преобразование Лапласа этого сигнала есть функция комплексной переменной р, выраженная интегралом

u(t) называют оригиналом, а функцию U(p) его изображением

Для примера определим изображение функции включения σ(t)=1(t)

Учитывая

Получим

Преобразование Лапласа обладает линейными свойствами, т.е.

О братное преобразование Лапласа

где а1 — вещественная переменная, отражаемая на комплексной плоскости.

Осуществив преобразование Лапласа обеих частей дифференциального уравнения (1), получим

Передаточной функцией (операторным коэффициентом передачи) линейной цепи называется .

Где через Q(p) обозначают сомножитель перед UВЫХ(р) называя собственным оператором системы, а сомножитель перед UВХ(р) — через R(p) и называют оператором воздействия.

Передаточная функция К(р) отражает результат аналитического переноса комплексного частотного коэффициента передачи К(ω) с мнимой осную на всю область комплексных частот р=α+jω.

Если известна передаточная функция К(р), то выходную реакцию электрической цепи на заданное входное воздействие UВХ(t) можно определить по следующей схеме:

• записать изображение входного сигнала UВХ(t) -> UВХ(р);

• найти изображение выходного сигнала UВЫХ(р) = K(p)* UВХ(р);

• вычислить выходной сигнал UВЫХ(р) -> UВЫХ(t).

Метод интеграла наложения. Cвойства линейных четырехполюсников часто проще оценить видом их отклика на воздействие ряда элементарных сигналов. В качестве элементарных сигналов используются

  • прямоугольные импульсы, длительностью ∆, в пределе стремящиеся к дельта-функции δ(t);

  • ступенчатые функции, возникающие в виде функций включения σ(t) через равные промежутки времени ∆. Высота каждой ступеньки равна приращению сигнала на интервале времени ∆.

Дельта-функция и функция включения связаны между собой аналитически. Результатом дифференцирования единичной функции является дельта-функция

Импульсная характеристики линейной цепи h(t) - реакцию системы на поданную на вход дельта-функцию δ(t).

П ереходная характеристика g(t) - отклик линейной цепи на единичную функцию σ(t). Пример

Характеристики линейной цепи.

а — различные виды импульсных; б — переходная

Если входной и выходной сигналы линейной цепи имеют одинаковую размерность, то импульсная характеристика, как и дельта-функция времени, имеет размерность частоты.

а - входной сигнал- прямоугольных импульсов

б - отклики на импульсы и выходной сигнал

а - входной сигнал- прямоугольных импульсов

б - отклики на импульсы и выходной сигнал

Положим, что требуется определить выходной сигнал UВЫХ(t). Известны ее импульсная характеристика h(t) и входной сигнал UВХ(t). Заменим приближенно кривую входного сигнала UВХ(t)ступенчатой линией в виде совокупности достаточно коротких прямоугольных импульсов, имеющих одинаковую длительность ∆τ. Если выбрать длительность ∆τ бесконечно малой, то отклик линейной цепи на первый по счету прямоугольный импульс будет приближенно равен отклику той же цепи на дельта- функцию (а это будет импульсная характеристика), умноженному на площадь (UВХ(0) ∆τ) первого импульса, т. е. UВХ(0) ∆τ h(t) Откликом цепи на второй импульс является произведение UВХ(∆τ) ∆τ h(t- ∆τ) , где UВХ(∆τ) ∆ τ — площадь этого импульса, а величина h(t- ∆τ) — импульсная характеристика цепи, соответствующая моменту времени t = ∆τ. Следовательно, для некоторого произвольного момента времени t = n ∆τ (n — число условно сформированных импульсов,

п риходящихся на интервал времени O...t) отклик линейной цепи приближенно выразится суммой

Е сли длительность импульсов ∆τ, отражающих входной сигнал, последовательно приближается к нулю, то малое приращение времени ∆τ превращается в dτ, а операция суммирования трансформируется в операцию интегрирования по переменной τ= k ∆τ

В более общей форме

В теории электрических цепей часто применяют другую, эквивалентную форму интеграла Дюамеля