
- •Введение.
- •Цели и задачи дисциплины.
- •Связь с другими дисциплинами и необходимый уровень подготовки.
- •Кодирование логической и двоичной информации электрическими сигналами.
- •Характеристики электрических сигналов.
- •Простейшие логические операции и их схемотехническая реализация (диодные схемы).
- •Ттл элемент, работа схемы, основные характеристики.
- •Разновидности логических элементов и серии интегральных микросхем.
- •Соединения логических элементов и радиокомпонентов.
- •Схемотехника функциональных устройств.
- •Схемотехника последовательностных устройств.
- •Триггеры.
- •Счётчики.
- •Двоичные счетчики.
- •Недвоичные счетчики.
- •Регистры.
- •Параллельные регистры.
- •Последовательные (сдвиговые) регистры.
- •Комбинационные устройства.
- •Дешифраторы.
- •Линейный дешифратор.
- •Матричный дешифратор.
- •Пирамидальный дешифратор.
- •Дешифраторы интегрального исполнения.
- •Мультиплексор и демультиплексор.
- •Мультиплексоры интегрального исполнения.
- •Сумматоры.
- •Одноразрядные комбинационные сумматоры.
- •Многоразрядные сумматоры.
- •Последовательный многоразрядный сумматор.
- •Параллельный многоразрядный сумматор.
- •Ускоренный перенос.
- •Арифметико-логическое устройство.
- •Устройства памяти.
- •Статические элементы оперативных запоминающих устройств.
- •Запоминающий элемент на биполярных транзисторах.
- •Запоминающий элемент на полевых транзисторах.
- •Динамический запоминающий элемент оперативных запоминающих устройств.
- •Запоминающие элементы пзу.
- •Организация бис зу.
- •Построение запоминающих устройств эвм.
- •Программируемые логические матрицы.
- •Формирователи.
- •Определение интервала времени по заданным уровням сигналов в цепях первого порядка.
- •Формирователи периодических сигналов.
- •Несимметричный мультивибратор на логических элементах.
- •Формирователь фронтов (спадов) — триггер Шмитта.
- •Формирователи импульсов.
- •Формирователь на интегрирующей rc цепи.
- •Одновибратор с дифференцирующей rc цепью.
- •Одновибраторы интегрального исполнения.
- •Интерфейсные устройства.
- •Буферные устройства.
- •Передача сигналов по линиям связи.
- •Несимметричные линии связи.
- •Согласование линий связи.
- •Симметричные линии связи.
- •Цифро-аналоговые и аналого-цифровые преобразователи.
- •Цифро-аналоговые преобразователи (цап).
- •Цифро-аналоговый преобразователь на суммировании токов.
- •Цифро-аналоговый преобразователь на матрице r-2r.
- •Аналого-цифровые преобразователи (ацп).
- •Параллельный ацп.
- •Ацп последовательного приближения (последовательные ацп).
- •Ацп двойного интегрирования.
- •Системы индикации.
- •Индикация состояния логического элемента.
- •Индикация состояния шин.
Симметричные линии связи.
Наиболее надежные несимметричные линии связи выполняются с использованием коаксиального кабеля, но они дороги. Другой недостаток несимметричных линии — высокий уровень помех, имеющихся в общем проводнике. Эти недостатки практически отсутствуют у симметричных линий связи.
Симметричные линии — это два проводника изолированные от общего проводника. Как на входе, так и на выходе симметричная линия нагружается на характеристическое сопротивление, причем нагрузка подключается симметрично относительно общего проводника.
Обычно симметричные линии выполняются в виде витой пары (см. рис.114), характеристическое (волновое) сопротивление которой обычно около 130 омов.
Рис.114. Симметричная линия связи.
Симметричная линия имеет повышенную помехоустойчивость за счет того, что оба проводника линии подключены к общему проводнику схемы через одинаковые сопротивления. Для организации нормальной работы линии необходимо в обоих проводниках линии сигнал передавать в противофазе, это означает, что если на входе одного проводника линии сигнал имеет высокий уровень, то на входе другого проводника сигнал должен иметь низкий уровень.
Это можно осуществить с использованием двух инверторов при передаче и соответственно RS триггера при приеме (рис.115).
Рис.115. Симметричная линия связи с ТТЛ элементами.
Логические элементы, используемые в качестве передатчиков должны иметь повышенную нагрузочную способность, например 155ЛА6 или транзисторные каскады, построенные на базе микросхемы 155ЛП7 (рис.116).
Рис.116. Передатчик на микросхеме 155ЛП7.
На рисунке приняты обозначения: D — вход
данных, С — вход синхронизации, А — вход
линии связи. Так как для нормальной
работы симметричной линии связи на
проводники линии сигналы должны
подаваться в парафазном коде, в левой
схеме транзисторы включены эмиттерными
повторителями, а инверсия осуществляется
нижним элементом 2И-НЕ. В правой схеме
один транзистор включен по схеме
эмиттерного повторителя (инверсия
отсутствует), а другой включен ключом
(инверсия присутствует). Для согласования
в качестве нагрузок в обеих схемах
используют резисторы равные половине
волнового сопротивления
.
В качестве приемников симметричных линий связи необходимо использовать устройства, рассчитанные на парафазное представление информации и с гистерезисом на входе.
Лекция 35.
Цифро-аналоговые и аналого-цифровые преобразователи.
Электронные устройства предназначенные для изменения формы представления значений переменных. Существуют аналоговая и цифровая формы представления информации. Аналоговая форма представления состоит в том, что любая переменная представляется непрерывно изменяющейся величиной. Примером может служить электрическое напряжение или ток в любой электрической цепи. Действительно, ток в электрической цепи может принимать значение определяемое параметрами цепи, но количество этих значений бесконечно большое. Цифровая форма представления состоит в том, что значение переменной представляется многоразрядным числом позиционной системы счисления. Количество значений переменной при этом определяется погрешностью представления переменной. Так если переменная представляется четырехразрядным десятичным целым числом, то погрешность представления - единица младшего разряда, а количество значений переменной 10000.