
- •Ю.Г. Дорофеев, в.И. Устименко, в.А. Червоный материаловедение Учебное пособие для дистанционного обучения
- •1. Кристаллическое строение металлов
- •1.1. Характеристики кристаллических решеток
- •1.2. Дефекты кристаллического строения металлов
- •2. Теория сплавов
- •2.1. Кристаллизация металлов
- •2.2. Виды сплавов
- •2.3. Диаграммы состояния
- •3. Пластическая деформация и механические свойства металлов
- •4. Железо и его сплавы
- •1.1 Диаграмма состояния железо-цементит
- •5. Классификация и маркировка сталей и сплавов
- •6. Теория термической обработки стали
- •7. Инструментальные материалы
- •8. Цветные металлы и сплавы
- •8.1. Медь и ее сплавы
- •8.2. Алюминий и его сплавы
- •8.3. Титан и его сплавы
- •8.4. Магний и его сплавы
- •8.5. Антифрикционные сплавы
- •9. Металлы и сплавы с особыми свойствами
- •10. Неметаллические и композиционные материалы
- •Библиографический список
- •Материаловедение
- •346428, Г. Новочеркасск, ул. Просвещения, 132
8.4. Магний и его сплавы
В ряду технических легких металлов (Al, Be, Mg, Ti) наиболее легким является магний. Его плотность ─ около 1740 кг/м3, температура плавления 651ºС. Он обладает ГПУ кристаллической решеткой. Mg ─ активный металл, энергично взаимодействующий с кислородом воздуха. Тонкая пленка оксида MgO при температуре ниже 450 ºС предохраняет поверхность от дальнейшего оксидирования, однако, при более высоких температурах защитные свойства оксида нарушаются, и при 623 ºС магний сгорает ослепительно белым пламенем. Магний обладает весьма низким, особенно в литом состоянии, комплексом механических свойств (σв=100…120 МПа; σ0,2=20…30 МПа; δ=6…8 %; НВ=300 МПа; Е=45 ГПа). Прочностные свойства в значительной мере зависят от зернистости и дефектности литой структуры. Низкая пластичность Mg объясняется тем, что в металлах с гексагональной кристаллической решеткой при температуре, близкой к комнатной, скольжение происходит только по базисным плоскостям и лишь при нагреве появляются дополнительные плоскости скольжения и двойникования.
Для упрочнения магниевых сплавов широко используется эффект дисперсионного твердения с выделением дисперсных фаз типа Mg4Al3, MgZn2 и др., протекающего при искусственном старении закаленных сплавов. Диффузионные процессы в магниевых сплавах протекают чрезвычайно медленно, поэтому операции термообработки имеют большую продолжительность (время выдержки при температуре закалки доходит до 24 ч.). Охлаждение при закалке ведут в горячей воде или на воздухе.
Основные виды термической обработки имеют определенные условные обозначения. Отжиг обозначают Т2, закалку ─ Т4, закалку и старение для получения максимальной твердости ─ Т6, закалку и стабилизирующий отпуск ─ Т7 и т.д. Например, МА11Т4 означает деформируемый магниевый сплав МА11, подвергнутый закалке.
По технологии изготовления магниевые сплавы подразделяют на литейные и деформируемые (литейные маркируют буквами МЛ, деформируемые ─ МА). По применению сплавы классифицируют на конструкционные (большинство сплавов) и сплавы со специальными свойствами (например, МА17 применяют для изготовления звукопроводов ультразвуковых линий задержки). По плотности сплавы подразделяют на легкие и сверхлегкие. К легким относятся сплавы, легированные литием (МА18, МА21), остальные ─ легкие. Сплавы, легированные значительным количеством иттрия (ИМВ5, ИМВ7) отличает высокая прочность и пластичность при температурах выше 250ºС.
8.5. Антифрикционные сплавы
Сплавы цветных металлов широко применяются в качестве антифрикционных (подшипниковых) материалов. Они обладают гетерогенной структурой, состоящей из мягкой основы с равномерно распределенными включениями твердых частиц (баббиты, ряд сплавов на основе меди, цинковые антифрикционные сплавы) или из твердой основы и мягких включений (свинцовистая бронза, оловянистый алюминий).
Баббиты, например, Б83, Б18, БКА ─ сплавы на основе олова (Б83) или свинца (Б16 ─ с добавкой Sn, БКА ─ безоловянистый). Применяют баббиты для изготовления вкладышей подшипников скольжения быстроходных тяжелонагруженных машин (Б83, б88), автомобильных моторов (Б16), подшипников вагонов (БКА, БК2).
Алюминиевые подшипниковые сплавы, например АО9-2, АО20-1, работают в условиях высокой энергонапряженности (при высоких давлениях и скоростях скольжения).
Несколько уступает по антифрикционным свойствам алюминиевым сплавам свинцовистая бронза БрС30. Бронзу О5Ц5С5, латунь ЛЦ16К4 и др. применяют в качестве антифрикционных материалов при невысоких скоростях скольжения (1…3 м/с).