
- •Тема 2. Организация вычислительного процесса.
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков. Задания,
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •Взаимосвязь между заданиями, процессами и потоками Задание
- •2.1. Концепция процессов и потоков.
- •2.1. Концепция процессов и потоков.
- •Задание (JOB)
- •2.2. Мультипрограммирование. Формы
- •2.2.1. Мультипрограммирование в системах пакетной обработки
- •2.2.1. Мультипрограммирование в системах пакетной обработки
- •2.2.1. Мультипрограммирование в системах пакетной обработки
- •2.2.1. Мультипрограммирование в системах пакетной обработки
- •2.2.2. Мультипрограммирование в системах разделения времени
- •2.2.2. Мультипрограммирование в системах
- •2.2.2. Мультипрограммирование в системах разделения времени
- •2.2.3. Мультипрограммирование в системах реального времени
- •2.2.3. Мультипрограммирование в системах
- •2.2.3. Мультипрограммирование в системах реального времени
- •2.2.3. Мультипроцессорная обработка
- •2.2.3. Мультипроцессорная обработка
- •2.2.3. Мультипроцессорная обработка
- •2.2.3. Мультипроцессорная обработка
- •2.2.3.Мультипроцессорная обработка
- •2.2.3.Мультипроцессорная обработка
- •2.2.3. Мультипроцессорная обработка
- •2.2.3.Мультипроцессорная обработка
- •2.2.3. Мультипроцессорная обработка
- •2.2.3.Мультипроцессорная обработка
- •2.3.Управление процессами и потоками
- •2.3.Управление процессами и потоками
- •2.3.Управление процессами и потоками
- •2.3.Управление процессами и потоками
- •2.3.Управление процессами и потоками
- •2.3.Управление процессами и потоками
- •2.3.Управление процессами и потоками
- •2.3.2. Роль процессов, потоков и волокон в мультипрограммировании
- •2.3.2. Роль процессов, потоков и волокон в мультипрограммировании
- •2.4. Создание процессов и потоков.
- •2.4. Создание процессов и потоков.
- •2.4. Создание процессов и потоков. Модели процессов и потоков
- •2.4. Создание процессов и потоков. Модели процессов и потоков
- •Дескриптор процесса (блок управления) содержит:
- •Идентификация процесса
- •Информация по состоянию и управлению процессом
- •КОНТЕКСТ ПРОЦЕССА
- •Простейшая модель процесса
- •Простейшая модель процесса
- •Новый
- •Модель с тремя состояниями
- •2.4.2. Потоки и их модели
- •Поток на уровне пользователя (в пользовательском пространстве)
- •Поток на уровне пользователя (в
- •Поток на уровне пользователя (в
- •Поток на уровне пользователя ДОСТОИНСТВА:
- •Поток на уровне пользователя НЕДОСТАТКИ:
- •Поток на уровне ядра
- •Поток на уровне ядра
- •Поток на уровне ядра
- •Потоки и их модели
- •2.5.Планирование заданий, процессов и потоков
- •2.5.Планирование заданий, процессов и потоков
- •2.5.Планирование заданий, процессов и потоков
- •2.5.Планирование заданий, процессов и потоков
- •2.5.Планирование заданий, процессов и потоков
- •2.5.Планирование заданий, процессов и потоков
- •2.5.Планирование заданий, процессов и потоков
- •2.5.Планирование заданий, процессов и потоков
- •2.5.Планирование заданий, процессов и потоков
- •Схема планирования с учетом очередей заданий (процессов)
- •Долгосрочное
- •Граф состояния потока
- •Граф состояния потока
- •Граф состояния потока
- •Типичный граф состояния потока
- •Алгоритмы планирования потоков
- •Алгоритмы планирования потоков
- •Алгоритмы планирования потоков
- •Простейший алгоритм планирования, реализующий состояния потока для типичного графа состояния потоков
- •Кванты, выделяемые потокам, могут быть равными или различными (типичное значение десятки - сотни
- •Алгоритм планирования, реализующий предпочтения потокам с интенсивным вводом-выводом
- •Алгоритм планирования, реализующий предпочтения потокам с интенсивным вводом-выводом
- •Алгоритм планирования, реализующий предпочтения потокам с интенсивным вводом-выводом
- •Граф состояния потока
- •Алгоритмы приоритетного планирования
- •Алгоритмы приоритетного планирования
- •Алгоритмы приоритетного планирования
- •Алгоритмы приоритетного планирования
- •Алгоритмы приоритетного планирования
- •Алгоритмы приоритетного планирования
- •приоритеты
- •Алгоритмы приоритетного планирования
- •Алгоритмы приоритетного планирования
- •Изменение базового приоритета потока Увеличение приоритета
- •Работоспособные процессы (потоки)
- •2.6. Взаимодействие и синхронизация процессов и потоков
- •2.6. Взаимодействие и синхронизация процессов и потоков
- •2.6.2. Конкуренция процессов в борьбе за ресурсы
- •Взаимоблокировки (тупики, deadlock)
- •Взаимоблокировки (тупики, deadlock)
- •Взаимоблокировки (тупики, deadlock)
- •Проблема “голодание”
- •Проблема “голодание”
- •Проблема “голодание”
- •2.6.3. Сотрудничество с использованием разделения
- •2.6.3. Сотрудничество с использованием
- •2.6.3. Сотрудничество с использованием
- •2.6.4. Сотрудничество с использованием связи
- •2.6.4. Сотрудничество с использованием связи
- •2.6.4.Методы взаимоисключений
- •3.Использование системных функций входа в критическую секцию
- •4. Семафоры Дейкстры (Dijkstra)
- •5. Мониторы Хоара и Хансена
- •Описание структуры и функциональной схемы
- •Абстрактное описание структуры монитора:
- •Абстрактное описание структуры монитора:
- •Описание функционирования монитора
- •Описание функционирования монитора
- •Пример монитора Хоара
- •Пример монитора Хоара
- •Реализация мониторов
- •Решение задачи производитель-потребитель с помощью мониторов:
- •Решение задачи производитель-потребитель с помощью мониторов:
- •Решение задачи производитель-потребитель с помощью мониторов:
- •2.6.5. Взаимоблокировки (тупики)
- •Методы обнаружения взаимоблокировок
- •Граф ресурсов и процессов
- •2. В системе несколько ресурсов каждого типа.
- •Алгоритм обнаружения тупиков
- •Методы устранения тупиков
- •2.6.6. Синхронизирующие объекты ОС
- •2.6.6. Синхронизирующие объекты ОС
- •2.6.6. Синхронизирующие объекты ОС
- •2.6.7. Средства взаимодействия ОС между
- •Конвейеры
- •Конвейеры
- •Конвейеры
- •Конвейеры
- •Конвейеры
- •Конвейеры
- •2.6.7. Средства взаимодействия ОС между
- •Очереди сообщений
- •Очереди сообщений
- •Очереди сообщений
- •Очереди сообщений
- •Очереди сообщений
- •2.6.7. Средства взаимодействия ОС между
- •Почтовые ящики
- •Почтовые ящики
- •2.6.7. Средства взаимодействия ОС между процессами
- •2.6.7. Средства взаимодействия ОС между
- •2.6.7. Средства взаимодействия ОС между
- •2.7. Аппаратно-программные средства поддержки
- •2.7. Аппаратно-программные средства поддержки мультипрограммирования
- •2.7. Аппаратно-программные средства поддержки мультипрограммирования
- •2.7. Аппаратно-программные средства поддержки мультипрограммирования
- •2.7. Аппаратно-программные средства поддержки мультипрограммирования
- •2.7. Аппаратно-программные средства поддержки
- •2.7. Аппаратно-программные средства поддержки мультипрограммирования
- •2.7. Аппаратно-программные средства поддержки мультипрограммирования
- •Последовательность действий при обработке прерываний
- •2.7.2. Системные вызовы
- •Централизованная схема обработки системных вызовов
- •Централизованная схема обработки системных вызовов
- •Централизованная схема обработки системных вызовов
- •Централизованная схема обработки системных вызовов
- •Централизованная схема обработки системных вызовов

2.6.7. Средства взаимодействия ОС между
процессами
Конвейеры
Программный канал связи (pipe), или, как его иногда называют, конвейер, является средством, с помощью которого процессы могут обмениваться данными между собой на основе механизма ввода-вывода файлов (в UNIX).
Когда процесс А хочет отправить данные процессу В, он пишет их в канал, как если бы это был выходной файл (псевдофайл).
Процесс В читает данные из канала, как если бы он был входным файлом (псевдофайл).
Подобное средство взаимодействия используется в операционной системе UNIX.
151
Операционные системы

Конвейеры
Операции записи и чтения осуществляются потоком байтов, как это принято в UNIX-системах.
Функции, с помощью которых выполняется запись в канал и чтение из него, являются теми же самыми, что и при работе с файлами.
Канал представляет собой поток данных между двумя (или более) процессами.
На самом деле конвейеры не являются файлами на диске, а представляют собой буферную память, работающую по принципу FIFO, то есть по принципу обычной очереди.
152
Операционные системы

Конвейеры
Конвейер имеет определенный размер, который не может превышать 64 Кбайт и работает циклически, как реализация очереди на массивах, когда имеются указатели первого (head – голова) и последнего (tail – хвост) элементов очереди в массиве, которые перемещаются циклически по массиву.
153
Операционные системы

Конвейеры
В начальный момент оба указателя равны нулю. Добавление самого первого элемента в пустую очередь приводит к тому, что указатели на начало и на конец принимают значение, равное 1 (в массиве появляется первый элемент).
В последующем добавление нового элемента вызывает изменение значения второго указателя, поскольку он отмечает расположение именно последнего элемента очереди.
Чтение (и удаление) элемента (читается и удаляется всегда первый элемент из созданной очереди) приводит к необходимости модифицировать значение указателя на ее начало.
154
Операционные системы

Конвейеры
В результате операций записи (добавления) и чтения (удаления) элементов в массиве, моделирующем очередь элементов, указатели будут перемещаться от начала массива к его концу.
При достижении указателем значения индекса последнего элемента массива значение указателя вновь становится единичным (если при этом не произошло переполнение массива, то есть количество элементов в очереди не стало большим числа элементов в массиве).
Массив как бы замыкается в кольцо, организуя круговое перемещение указателей на начало и на конец, которые отслеживают первый и последний элементы в очереди.
155
Операционные системы

Конвейеры
Как информационная структура конвейер описывается идентификатором, размером и двумя указателями. Конвейеры представляют собой системный ресурс.
Чтобы начать работу с конвейером, процесс сначала должен заказать его у операционной системы и получить в свое распоряжение. Процессы, знающие идентификатор конвейера, могут через него обмениваться данными.
156
Операционные системы

Конвейеры
Функция создания конвейера:
DosCreatePipe (&ReadHandle, &WriteHandle, PipeSize);
Здесь ReadHandle — дескриптор чтения из конвейера, WriteHandle — дескриптор записи в конвейер, PipeSize — размер конвейера.
Функция чтения из конвейера:
DosRead (&ReadHandle, (PVOID)&Inform, sizeof(Inform). &BytesRead); Здесь ReadHandle — дескриптор чтения из конвейера, Inform — переменная любого типа, sizeof(Inform) — размер переменной Inform, BytesRead — количество прочитанных байтов. Данная функция при обращении к пустому конвейеру будет ожидать, пока в нем не появится информация для чтения.
Функция записи в конвейер:
DosWrite (&WriteHandle. (PVOID)&Inform, sizeofCInform),&SBytesWrite); Здесь WriteHandle — дескриптор записи в конвейер, BytesWrite — количество записанных байтов.
157
Операционные системы

2.6.7. Средства взаимодействия ОС между
процессами Очереди сообщений
Очереди (queues) сообщений представляют собой метод связи между взаимодействующими процессами, позволяющий передавать данные (сообщения) из одного процесса в другой процесс путем помещения их в некоторый буфер и последующего чтения из него.
158
Операционные системы

Очереди сообщений
С помощью очередей можно из одного или нескольких процессов независимым образом посылать сообщения некоторой задаче-приемнику.
Очередь работает только в одном направлении: только процесс-приемник может читать и удалять сообщения из очереди, а процессы-клиенты имеют право лишь помещать в очередь свои сообщения. Если же необходима двухсторонняя связь, то можно создать две очереди.
159
Операционные системы

Очереди сообщений
Очереди сообщений предоставляют возможность использовать несколько дисциплин обработки сообщений:FIFO — сообщение, записанное первым, будет первым и
прочитано;
LIFO — сообщение, записанное последним, будет
прочитано первым;приоритетный доступ — сообщения читаются с учетом
их приоритетов;произвольный доступ — сообщения читаются в
произвольном порядке.
При чтении сообщения из очереди его удаления не происходит (в отличие от канала).
160
Операционные системы