Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кусайкин Д.В / Для лекции.pptx
Скачиваний:
605
Добавлен:
11.04.2015
Размер:
5.41 Mб
Скачать

Проектирование КИХ-фильтров методом взвешивания

в частотной области

во временной области

Теоретические основы цифровой обработки сигналов. Слайд 82

Основные виды оконных функций

Требования к окнам:

-минимальный уровень боковых лепестков (min пульсаций АЧХ фильтра);

-минимальная ширина главного лепестка АЧХ окна (min ширина переходной полосы фильтра).

1. Прямоугольное окно

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 1

 

 

 

N 1

1,

 

 

 

 

n

 

 

2

 

 

 

2

 

wR (n)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0, остальные N

 

 

 

 

sin(

N

)

 

 

 

 

 

 

 

 

 

 

WR (e

j

)

 

 

2

 

 

 

 

 

 

sin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

Теоретические основы цифровой обработки сигналов. Слайд 83

Основные виды оконных функций

2. Обобщенное окно Хемминга

w (n) w (n)

 

) cos

2 n

(1

 

 

н

R

 

 

N

 

 

 

 

 

Теоретические основы цифровой обработки сигналов. Слайд 84

Основные виды оконных функция

3. Окно Кайзера

 

 

 

2n

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I0

1

 

 

sin

/

 

1

 

 

 

 

 

 

 

 

 

 

 

N 1

 

 

 

 

 

 

 

wK (n)

 

 

 

 

 

 

 

W (e j )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I0 ( )

 

 

 

K

 

2

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/

 

 

 

4. Окно Ланцоша

 

 

2 n

 

L

 

sin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 1

 

 

wL (n)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 n

 

 

 

 

 

 

 

N 1

 

 

 

 

 

 

 

 

 

 

 

 

Теоретические основы цифровой обработки сигналов. Слайд 85

Весовые функции окон и их ЧХ

Теоретические основы цифровой обработки сигналов. Слайд 86

Основные характеристики некоторых окон

Вид окна

1.

Прямоугольное

2.

Треугольное

3.

Ханна

4.

Хемминга

5.

Наттола

6.

Гауссовское

7.

Чебышёва

Максимальный

Асимтотическая

уровень

скорость спадания

бокового

бокового лепестка,

лепестка, дБ

дБ/октава

-13.3

-6

-26.5

-12

-31.5

-18

-43

-6

-98

-6

-42

-6

-50

0

Эквивалент

ширины

полосы

1.00

1.33

1.50

1.36

1.80

1.39

1.39

Теоретические основы цифровой обработки сигналов. Слайд 87

Проектирование методом частотной выборки

N 1

j

2

 

 

 

1

 

 

N 1

2

 

X p k xp n e

N

kn

xp n

 

X p k e j

N

kn

 

 

 

 

 

 

 

n 0

 

 

 

 

 

 

 

N k 0

 

 

ДПФ

 

 

 

 

 

 

 

 

ОДПФ

 

 

 

 

1 z

N N 1

X p k

 

 

 

 

 

X z

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

2

 

 

 

 

 

 

 

 

 

k 0 1 z 1e j

 

N k

 

 

1. Произвести дискретизацию в N равноотстоящих точках на единичной окружности

2. По этим точкам интерполировать непрерывную ЧХ

Теоретические основы цифровой обработки сигналов. Слайд 88

Проектирование методом частотной выборки

1+ 1

Ĥ(ej ), H(ej )

 

 

 

 

 

 

1- 1

 

 

 

 

 

 

 

 

1+ 2

 

 

 

 

 

 

 

 

1- 2 0

s

p

 

 

 

2

 

 

 

 

 

 

 

 

 

Ĥ(ej )

 

 

 

 

 

 

 

 

 

 

T1

T2

 

 

 

 

 

 

 

 

T3

 

 

 

 

 

 

 

 

 

 

 

 

0

ПП

переходная

ПЗ

 

 

 

 

 

полоса

 

 

 

 

 

Теоретические основы цифровой обработки сигналов. Слайд

89

 

Проектирование оптимальных КИХ-фильтров

Критерий оптимальности:

Min. max. ошибки аппроксимации

Вид аппроксимации ЧХ:

Чебышевская

a(n) cos n

Процедура оптимизации: Итерационный алгоритм замены

Аппроксимация ЧХ фильтра

H * (e j ) Q(e j )P(e j )

 

Вид фильтра

Q(ejw)

P(ejw)

Вид 1

1

Вид 2

cos ( /2)

Вид 3

sin

Вид 4

sin ( /2)

N 1

2

a%(n)

n 0

N 1

2 b%(n)

n 0

N 3

2

c%(n)

n 0

N 1

2 d%(n)

n 0

cos n

cos n

cos n

cos n

Теоретические основы цифровой обработки сигналов. Слайд 90

Постановка задачи проектирования

D (e j ) - заданная ЧХ фильтра (идеальная);

W (e j ) - весовая функция ошибки аппроксимации.

Взвешенная функция ошибки аппроксимации

E(ej ) W(ej ) D(ej ) H*(ej )

т.к. H * (e j ) Q(e j )P(e j )

 

D(ej )

 

то:

E(ej ) W(ej )Q(ej )

j

)

 

P(ej )

 

 

Q(e

 

 

 

 

 

ˆ

 

j

) W (e

j

 

 

j

 

 

 

ˆ

 

j

 

D(ej )

Обозначая:

 

W (e

 

 

 

)Q(e

 

 

) и

D(e

 

)

 

 

 

 

 

 

 

 

Q(ej )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Получим:

E(e

j

 

 

ˆ

j

 

 

ˆ

 

j

) P(e

j

)

 

 

 

 

 

 

 

) W(e

 

) D(e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m a x

 

E ( e j )

 

 

 

 

 

m i n

 

- критерий оптимальности

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a%( n ) , b%( n )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c%( n ) , d%( n )

 

 

 

 

 

 

Теоретические основы цифровой обработки сигналов. Слайд 91

Соседние файлы в папке Кусайкин Д.В