- •ГОУ ВПО «СибГУТИ» УрТИСИ
- •Дисциплина учебного плана
- •Область науки и техники, занимающаяся разработкой методов создания электронных приборов и устройств, которые
- •Лекция 1 Введение
- •Цель обучения
- •В результате изучения дисциплины студенты должны:
- •Методическое обеспечение курса
- •Литература
- •Литература
- •Место дисциплины Электроника в учебном плане
- •Специальные диоды
- •Специальные диоды
- •Специальные диоды
- •Специальные диоды
- •Специальные диоды
- •Специальные диоды
- •стабилитроны
- •2.17 Классификация и система
- •2-й элемент – буква – подкласс прибора:
- •3-й элемент – число – основные функциональные возможности прибора:
- •Классификация и система обозначений диодов
- •Диодная сборка
- •Тема 3. Биполярные транзисторы
- •Транзисторы
- •Биполярные транзисторы (далее транзисторы)
- •Физические процессы в транзисторе Транзисторы
- •Физические процессы в транзисторе Транзисторы
- •Транзисторы
- •Транзисторы
- •Транзисторы
- •Транзисторы
- •3.3 Вольт-амперные характеристики транзистора (ВАХ)
- •3.3 Вольт-амперные характеристики транзистора (ВАХ)
- •Модель Эберса-Молла
- •Транзисторы
- •Транзисторы
- •Транзисторы
- •Транзисторы
- •ВАХ схемы общий эмиттер
- •Параметры транзистора
- •Биполярные транзисторы
- •3.5 Инерционные свойства транзисторов
- •Инерционные свойства транзисторов
- •Нарастание тока коллектора происходит в течение
- •За одну постоянную времени τ экспонента нарастает до уровня 0,63·∆Iк.
- •3.6 Шумы транзистора
- •Шумы транзистора
- •3.7 Влияние изменения температуры на ВАХ
- •Влияние температуры
- •3.8Предельные режимы работы транзистора
- •3.9Классификация и система обозначений
- •Классификация и система обозначений
- •Классификация и система обозначений
- •Классификация и система обозначений
- •система обозначений
- •Транзисторы
- •Биполярные транзисторы
- •Эквивалентные схемы замещения транзисторов
- •физическая Т-образная эквивалентная схема
- •Эквивалентная схема для включения транзистора по схеме общий
- •физическая Т-образная эквивалентная схема
- •Эквивалентная схема составлена для постоянного тока. Схему можно распространить и для переменного тока,
- •rэ - дифференциальное сопротивление перехода Э-Б, включенного в прямом направлении.
- •Наличие в схеме реактивного элемента в виде емкости говорит о том, что в
- •Параметры эквивалентной схемы:
- •Генератор тока В·Iб можно заменить генератором напряжения на основании теоремы об эквивалентном генераторе.
- •физическая Т-образная эквивалентная схема
- •Вид транзистора КТ908А
- •Биполярные транзисторы
- •Транзистор как линейный четырехполюсник
- •Транзистор как линейный четырехполюсник
- •Представим четырехполюсник в виде системы линейных дифференциальных уравнений.
- •Введем параметры.
- •Запишем систему уравнений четырехполюсника
- •Упростим электрическую схему четырехполюсника
- •Найдем связь между параметрами
- •связь между параметрами
- •Способы получения h- параметров
- •Способы получения h- параметров с помощью вольт-амперных характеристик.
- •Получение h- параметров с помощью вольт-амперных характеристик
- •h- параметры
- •Первый отечественный транзистор П1
- •Тема 4. Полевые транзисторы
- •полевые транзисторы
- •4.1 Классификация ПТ
- •Классификация ПТ
- •Классификация ПТ
- •4.2 Принцип работы ПТ
- •Электрод, через который в канал втекают носители тока называется исток (и).
- •Принцип работы ПТ
- •Принцип работы ПТ
- •Принцип работы ПТ
- •4.3 Вольт-амперные характеристики ПТ
- •4.3 Вольт-амперные характеристики ПТ
- •Вольт-амперные характеристики ПТ
- •4.4Параметры ПТ
- •Параметры ПТ
- •Возможны три схемы включения полевого
- •4.5Полевые транзисторы с изолированным затвором
- •Особенность транзисторов данного типа – очень высокое входное сопротивление, поскольку управляющий затвор отделен
- •МДП транзистор со встроенным каналом
- •Встроенный канал
- •МДП транзисторы с индуцированным каналом
- •МДП транзисторы с индуцированным каналом
- •МЕП транзисторы
- •МЕП - транзисторы (металл-полупроводник)
- •Полевые транзисторы с изолированным затвором
- •4.6 Ячейка памяти на основе МОП-транзистора
- •Ячейка памяти на основе МОП-транзистора
- •ячейка флэш-памяти
- •ячейка флэш-памяти
- •4.7 Модели полевого транзистора
- •Модели полевого транзистора
- •Модели полевого транзистора
- •4.8 Классификация и система обозначений
- •Система обозначений полевого транзистора
- •5.1 Тиристоры
- •Тиристоры
- •5.2 Устройство тиристора
- •Контакт к внешнему p-слою называют анодом, а к внешнему n-слою - катодом. Внутренние
- •Рассмотрим физические процессы в тиристоре, для чего представим его в виде двух биполярных
- •На физические процессы в тиристоре основное влияние оказывают два фактора:
- •5.3 Динистор
- •динистор
- •динистор
- •динистор
- •динистор
- •динистор
- •динистор Динисторы применяются в быстродействующих системах защиты схем, нагрузки от перенапряжения.
- •5.4 Тиристор
- •Тиристоры
- •5.5Симисторы
- •Симисторы
- •Симисторы
- •5.6Классификация и система обозначений
- •Классификация и система обозначений
- •Графическое обозначение тиристоров
- •5.7 Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •тиристоры
- •Тема 6. Усилительный каскад на транзисторе
- •Усилители
- •Усилители
- •Усилители
- •Усилители
- •Усилители
- •Усилители
- •Усилители Графическое представление амплитудной характеристики
- •6.2Включение транзистора
- •Включение транзистора в схему усилительного каскада
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Начальный режим работы транзистора
- •Начальный режим работы транзистора
- •Начальный режим работы транзистора
- •Начальный режим работы транзистора
- •Ячейка усилителя на электронных лампах. Вверху виден усилитель в интегральном исполнении,
- •6.3 Методы стабилизации положения РТ
- •Как отмечалось ранее с повышением температуры транзистора его параметры изменяются таким образом, что
- •С повышением температуры транзистора его ток базы увеличивается, ток коллектора также увеличивается на
- •Схема с эмиттерной стабилизацией
- •эмиттерная стабилизация положения РТ
- •эмиттерная стабилизация положения РТ
- •коллекторная стабилизация положения РТ
- •коллекторная стабилизация положения РТ
- •Термокомпенсация положения РТ
- •Термостабилизация
- •Методы стабилизации положения РТ могут применяться совместно и не противоречат друг другу.
- •6.4 Прохождение сигнала через усилительный каскад
- •Подключим ко входу усилителя источник
- •Под действием этих напряжений в цепи базы потечет
- •Входная цепь усилительного каскада или цепь базы транзистора
- •Коллекторная цепь транзистора В коллекторной цепи также течет ток
- •Коллекторная цепь транзистора
- •Коллекторная цепь транзистора
- •Из построения видно:
- •Из построения видно:
- •Из построения следует: амплитудное значение напряжения сигнала равно 10 мВ, амплитудное значение напряжения
- •6.5 Усилительный каскад
- •Усилительный каскад. Назначение элементов
- •Усилительный каскад. Назначение элементов
- •Сопротивление Rэ обеспечивает обратную связь,
- •Усилитель в интегральном исполнении
- •6.6 Параметры усилительного каскада
- •6.6.1 Каскад ОЭ
- •Каскад ОЭ
- •Каскад ОЭ
- •Каскад ОЭ
- •Каскад ОЭ
- •Параметры каскада ОЭ
- •Преобразуем схему согласно условиям
- •Определим параметры каскада
- •параметры каскада
- •Оценим значения параметров
- •6.6.2 Каскад ОБ
- •Эквивалентная схема
- •Параметры усилительного каскада ОБ
- •Параметры усилительного каскада ОБ
- •6.6.3 Каскад ОК
- •Эквивалентная схема
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Таким образом, каскад ОК имеет следующие
- •Параметры каскада ОК
- •Параметры каскада ОК
- •6.7 Методы улучшения параметров каскадов
- •Анализ параметров каскадов
- •Эмиттерный повторитель на составном транзисторе схема Дарлигтона
- •Эмиттерный повторитель на составном транзисторе схема Шиклаи
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Источник тока
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Источник напряжения
- •Пример источника напряжения
- •Подключение каскада ОК
- •Параметры каскада
- •Каскад ГСТ
- •Каскад ГСТ
- •Схема «токовое зеркало»
- •Транзистор 2 охвачен 100%-ной обратной связью, т.к. его выход (вывод коллектора) соединен с
- •Каскад ГСТ
- •Усилительный каскад с ГСТ ГСТ включим в коллекторную цепь усилительного
- •Каскад ГСТ
- •Каскад ГСТ
- •Каскад с ГСТ
- •Каскад с ГСТ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Ограничитель напряжения со стабилитроном КС147А
- •На прямой ветви до напряжения 0,6 В диод закрыт. Его сопротивление много больше
- •Образуется делитель напряжения R – rд.
- •На обратной ветви до напряжения Uст стабилитрон также закрыт, его сопротивление много больше
- •Поменяем местами диод и стабилитрон
- •Ограничитель напряжения со стабилитроном КС147А
- •Применение выпрямительных диодов
- •Применение выпрямительного диода
- •Применение выпрямительного диода
- •Применение выпрямительного диода
- •Кристалл интегральной микросхемы
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Бескорпусные транзисторы
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Второй уровень - структурная схема.
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Кристалл интегральной микросхемы
- •Конструктивно-технологические типы ИМС
- •Конструктивно-технологические типы ИМС
- •Конструктивно-технологические типы микросхем
- •Конструктивно-технологические типы микросхем
- •Конструктивно-технологические типы микросхем
- •Конструктивно-технологические типы микросхем
- •Конструктивно-технологические типы микросхем
- •2. Технологические основы микроэлектроники
- •2. Технологические основы микроэлектроники
- •2. ТЕХНОЛОГИЧЕСКИЕ ОСНОВЫ МИКРОЭЛЕКТРОНИКИ
- •Технологический цикл разделяют на два больших этапа – обработки пластин и сборочно-контрольной.
- •Технологические приемы создания микросхем
- •Технологические приемы создания микросхем
- •Диффузия примесей – технологическая операция легирования – введение примесей в пластину или эпитаксиальную
- •Основной механизм проникновения примесного атома в кристаллическую решетку состоит в последовательном перемещении по
- •Диффузия
- •Ионное легирование – технологическая операция введения примесей в поверхностный слой пластины или эпитаксиальной
- •Ионное легирование
- •Ионное легирование позволяет создавать слои с субмикронными горизонтальными размерами толщиной менее 0,1 мкм
- •Термическое окисление
- •Термическое окисление
- •Если после окисления удалить маску нитрида и провести неглубокое легирование донорами, то получим
- •Травление
- •Травление. Удаление участка двуокиси кремния.
- •Литография
- •После локальной засветки растворяются и удаляются незасвеченные участки.
- •Свет Литография
- •Литография
- •3.БИПОЛЯРНЫЕ СТРУКТУРЫ
- •3.1 Структура эпитаксиально-планарного транзистора
- •Структура эпитаксиально-планарного транзистора
- •МНОГОЭМИТТЕРНЫЕ ТРАНЗИСТОРЫ
- •ТРАНЗИСТОРЫ С ДИОДОМ ШОТКИ
- •РЕЗИСТОРЫ
- •КОНДЕНСАТОРЫ Структура МДП-конденсатора может быть следующей.
- ••При создании интегральной схемы памяти МОП -транзисторы с плавающим затвором очень
- ••Еще большее увеличение информационной емкости может быть достигнуто тем, что каждая ячейка памяти
- •Литература
- •Литература
- •Бескорпусной транзистор с упаковкой
- •Электроваккумные приборы
- •Мощный генераторный триод с радиатором
- •Электровакуумный пентод
- •Микросхемы памяти и транзисторы
Основы микроэлектроники
Элемент – часть микросхемы, реализующая функцию какого либо электрорадиоэлемента, которая не может быть выделена как самостоятельное изделие.
Под электрорадиоэлементом понимают транзистор, диод, резистор, конденсатор, соединение и др.
431
Основы микроэлектроники |
|
|||
Элементы могут выполнять и более сложные |
|
|||
функции, например, логические (логические |
|
|||
элементы) или запоминания информации |
|
|||
(элементы памяти). |
|
|
|
|
Структура ячейки флэш-памяти |
|
|||
И |
З |
С |
Нитрид кремния |
|
|
|
|
Si3N4 |
|
n+- |
|
n+- |
SiO2 |
|
p- |
p-типа GaAs |
|
||
|
|
|
||
|
|
|
П -подложка |
317 |
Основы микроэлектроники
Компонент – часть микросхемы, реализующая функцию какого либо электрорадиоэлемента, которая может быть выделена как самостоятельное изделие. Компоненты устанавливаются на подложке микросхемы при выполнении сборочно-монтажных операций. К простым компонентом относятся бескорпусные транзисторы, диоды, малогабаритные катушки индуктивности и др.
Сложные компоненты содержат несколько элементов, например, диодные сборки.
433
Бескорпусные транзисторы
434
Основы микроэлектроники
С точки зрения внутреннего устройства микросхема представляет собой совокупность большого числа элементов и компонентов, размещенных на поверхности или в объеме общей диэлектрической или полупроводниковой подложки. Термин «интегральная» отражает конструктивное объединение элементов и компонентов, а также полное или частичное объединение технологических процессов их изготовления.
435
Основы микроэлектроники
Микросхемотехника (интегральная схемотехника) как одна из основ микроэлектроники охватывает исследования и разработку оптимальных схем.
Многие современные микросхемы являются очень сложными электронными устройствами, поэтому при их описании и анализе используются по меньшей мере два уровня схемотехнического представления.
436
Основы микроэлектроники
Первый наиболее детальный уровень – это
электрическая схема. Она определяет электрические соединения элементов (транзисторов, диодов, резисторов и др.).
На этом уровне устанавливается связь между электрическими параметрами схемы и параметрами входящих в нее элементов.
437
Основы микроэлектроники
Электрическая схема – условное графическое обозначение электрической цепи. На электрической схеме изображаются ее элементы – идеализированные модели реально существующих электрических устройств (транзисторов, диодов, резисторов и др.).
Под электрической цепью понимают совокупность соединенных между собой электротехнических устройств и элементов, по которым может протекать электрический ток.
438
Второй уровень - структурная схема.
Она определяет функциональное соединение отдельных каскадов, описываемых электрическими схемами.
Помехи
Источник |
|
|
|
Усилитель |
|
Нагрузка |
сигнала |
|
|
|
усилителя |
||
|
|
|
|
|||
Источник
питания
440
Основы микроэлектроники
По функциональному назначению микросхемы подразделяются на аналоговые и цифровые.
В аналоговых микросхемах сигналы изменяются по закону непрерывной функции. Типовой пример аналоговой микросхемы – операционный усилитель.
Цифровая микросхема предназначена для преобразования и обработки сигналов, изменяющихся по закону дискретной функции.
441
