- •ГОУ ВПО «СибГУТИ» УрТИСИ
- •Дисциплина учебного плана
- •Область науки и техники, занимающаяся разработкой методов создания электронных приборов и устройств, которые
- •Лекция 1 Введение
- •Цель обучения
- •В результате изучения дисциплины студенты должны:
- •Методическое обеспечение курса
- •Литература
- •Литература
- •Место дисциплины Электроника в учебном плане
- •Специальные диоды
- •Специальные диоды
- •Специальные диоды
- •Специальные диоды
- •Специальные диоды
- •Специальные диоды
- •стабилитроны
- •2.17 Классификация и система
- •2-й элемент – буква – подкласс прибора:
- •3-й элемент – число – основные функциональные возможности прибора:
- •Классификация и система обозначений диодов
- •Диодная сборка
- •Тема 3. Биполярные транзисторы
- •Транзисторы
- •Биполярные транзисторы (далее транзисторы)
- •Физические процессы в транзисторе Транзисторы
- •Физические процессы в транзисторе Транзисторы
- •Транзисторы
- •Транзисторы
- •Транзисторы
- •Транзисторы
- •3.3 Вольт-амперные характеристики транзистора (ВАХ)
- •3.3 Вольт-амперные характеристики транзистора (ВАХ)
- •Модель Эберса-Молла
- •Транзисторы
- •Транзисторы
- •Транзисторы
- •Транзисторы
- •ВАХ схемы общий эмиттер
- •Параметры транзистора
- •Биполярные транзисторы
- •3.5 Инерционные свойства транзисторов
- •Инерционные свойства транзисторов
- •Нарастание тока коллектора происходит в течение
- •За одну постоянную времени τ экспонента нарастает до уровня 0,63·∆Iк.
- •3.6 Шумы транзистора
- •Шумы транзистора
- •3.7 Влияние изменения температуры на ВАХ
- •Влияние температуры
- •3.8Предельные режимы работы транзистора
- •3.9Классификация и система обозначений
- •Классификация и система обозначений
- •Классификация и система обозначений
- •Классификация и система обозначений
- •система обозначений
- •Транзисторы
- •Биполярные транзисторы
- •Эквивалентные схемы замещения транзисторов
- •физическая Т-образная эквивалентная схема
- •Эквивалентная схема для включения транзистора по схеме общий
- •физическая Т-образная эквивалентная схема
- •Эквивалентная схема составлена для постоянного тока. Схему можно распространить и для переменного тока,
- •rэ - дифференциальное сопротивление перехода Э-Б, включенного в прямом направлении.
- •Наличие в схеме реактивного элемента в виде емкости говорит о том, что в
- •Параметры эквивалентной схемы:
- •Генератор тока В·Iб можно заменить генератором напряжения на основании теоремы об эквивалентном генераторе.
- •физическая Т-образная эквивалентная схема
- •Вид транзистора КТ908А
- •Биполярные транзисторы
- •Транзистор как линейный четырехполюсник
- •Транзистор как линейный четырехполюсник
- •Представим четырехполюсник в виде системы линейных дифференциальных уравнений.
- •Введем параметры.
- •Запишем систему уравнений четырехполюсника
- •Упростим электрическую схему четырехполюсника
- •Найдем связь между параметрами
- •связь между параметрами
- •Способы получения h- параметров
- •Способы получения h- параметров с помощью вольт-амперных характеристик.
- •Получение h- параметров с помощью вольт-амперных характеристик
- •h- параметры
- •Первый отечественный транзистор П1
- •Тема 4. Полевые транзисторы
- •полевые транзисторы
- •4.1 Классификация ПТ
- •Классификация ПТ
- •Классификация ПТ
- •4.2 Принцип работы ПТ
- •Электрод, через который в канал втекают носители тока называется исток (и).
- •Принцип работы ПТ
- •Принцип работы ПТ
- •Принцип работы ПТ
- •4.3 Вольт-амперные характеристики ПТ
- •4.3 Вольт-амперные характеристики ПТ
- •Вольт-амперные характеристики ПТ
- •4.4Параметры ПТ
- •Параметры ПТ
- •Возможны три схемы включения полевого
- •4.5Полевые транзисторы с изолированным затвором
- •Особенность транзисторов данного типа – очень высокое входное сопротивление, поскольку управляющий затвор отделен
- •МДП транзистор со встроенным каналом
- •Встроенный канал
- •МДП транзисторы с индуцированным каналом
- •МДП транзисторы с индуцированным каналом
- •МЕП транзисторы
- •МЕП - транзисторы (металл-полупроводник)
- •Полевые транзисторы с изолированным затвором
- •4.6 Ячейка памяти на основе МОП-транзистора
- •Ячейка памяти на основе МОП-транзистора
- •ячейка флэш-памяти
- •ячейка флэш-памяти
- •4.7 Модели полевого транзистора
- •Модели полевого транзистора
- •Модели полевого транзистора
- •4.8 Классификация и система обозначений
- •Система обозначений полевого транзистора
- •5.1 Тиристоры
- •Тиристоры
- •5.2 Устройство тиристора
- •Контакт к внешнему p-слою называют анодом, а к внешнему n-слою - катодом. Внутренние
- •Рассмотрим физические процессы в тиристоре, для чего представим его в виде двух биполярных
- •На физические процессы в тиристоре основное влияние оказывают два фактора:
- •5.3 Динистор
- •динистор
- •динистор
- •динистор
- •динистор
- •динистор
- •динистор Динисторы применяются в быстродействующих системах защиты схем, нагрузки от перенапряжения.
- •5.4 Тиристор
- •Тиристоры
- •5.5Симисторы
- •Симисторы
- •Симисторы
- •5.6Классификация и система обозначений
- •Классификация и система обозначений
- •Графическое обозначение тиристоров
- •5.7 Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •тиристоры
- •Тема 6. Усилительный каскад на транзисторе
- •Усилители
- •Усилители
- •Усилители
- •Усилители
- •Усилители
- •Усилители
- •Усилители Графическое представление амплитудной характеристики
- •6.2Включение транзистора
- •Включение транзистора в схему усилительного каскада
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Начальный режим работы транзистора
- •Начальный режим работы транзистора
- •Начальный режим работы транзистора
- •Начальный режим работы транзистора
- •Ячейка усилителя на электронных лампах. Вверху виден усилитель в интегральном исполнении,
- •6.3 Методы стабилизации положения РТ
- •Как отмечалось ранее с повышением температуры транзистора его параметры изменяются таким образом, что
- •С повышением температуры транзистора его ток базы увеличивается, ток коллектора также увеличивается на
- •Схема с эмиттерной стабилизацией
- •эмиттерная стабилизация положения РТ
- •эмиттерная стабилизация положения РТ
- •коллекторная стабилизация положения РТ
- •коллекторная стабилизация положения РТ
- •Термокомпенсация положения РТ
- •Термостабилизация
- •Методы стабилизации положения РТ могут применяться совместно и не противоречат друг другу.
- •6.4 Прохождение сигнала через усилительный каскад
- •Подключим ко входу усилителя источник
- •Под действием этих напряжений в цепи базы потечет
- •Входная цепь усилительного каскада или цепь базы транзистора
- •Коллекторная цепь транзистора В коллекторной цепи также течет ток
- •Коллекторная цепь транзистора
- •Коллекторная цепь транзистора
- •Из построения видно:
- •Из построения видно:
- •Из построения следует: амплитудное значение напряжения сигнала равно 10 мВ, амплитудное значение напряжения
- •6.5 Усилительный каскад
- •Усилительный каскад. Назначение элементов
- •Усилительный каскад. Назначение элементов
- •Сопротивление Rэ обеспечивает обратную связь,
- •Усилитель в интегральном исполнении
- •6.6 Параметры усилительного каскада
- •6.6.1 Каскад ОЭ
- •Каскад ОЭ
- •Каскад ОЭ
- •Каскад ОЭ
- •Каскад ОЭ
- •Параметры каскада ОЭ
- •Преобразуем схему согласно условиям
- •Определим параметры каскада
- •параметры каскада
- •Оценим значения параметров
- •6.6.2 Каскад ОБ
- •Эквивалентная схема
- •Параметры усилительного каскада ОБ
- •Параметры усилительного каскада ОБ
- •6.6.3 Каскад ОК
- •Эквивалентная схема
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Таким образом, каскад ОК имеет следующие
- •Параметры каскада ОК
- •Параметры каскада ОК
- •6.7 Методы улучшения параметров каскадов
- •Анализ параметров каскадов
- •Эмиттерный повторитель на составном транзисторе схема Дарлигтона
- •Эмиттерный повторитель на составном транзисторе схема Шиклаи
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Источник тока
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Источник напряжения
- •Пример источника напряжения
- •Подключение каскада ОК
- •Параметры каскада
- •Каскад ГСТ
- •Каскад ГСТ
- •Схема «токовое зеркало»
- •Транзистор 2 охвачен 100%-ной обратной связью, т.к. его выход (вывод коллектора) соединен с
- •Каскад ГСТ
- •Усилительный каскад с ГСТ ГСТ включим в коллекторную цепь усилительного
- •Каскад ГСТ
- •Каскад ГСТ
- •Каскад с ГСТ
- •Каскад с ГСТ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Ограничитель напряжения со стабилитроном КС147А
- •На прямой ветви до напряжения 0,6 В диод закрыт. Его сопротивление много больше
- •Образуется делитель напряжения R – rд.
- •На обратной ветви до напряжения Uст стабилитрон также закрыт, его сопротивление много больше
- •Поменяем местами диод и стабилитрон
- •Ограничитель напряжения со стабилитроном КС147А
- •Применение выпрямительных диодов
- •Применение выпрямительного диода
- •Применение выпрямительного диода
- •Применение выпрямительного диода
- •Кристалл интегральной микросхемы
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Бескорпусные транзисторы
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Второй уровень - структурная схема.
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Кристалл интегральной микросхемы
- •Конструктивно-технологические типы ИМС
- •Конструктивно-технологические типы ИМС
- •Конструктивно-технологические типы микросхем
- •Конструктивно-технологические типы микросхем
- •Конструктивно-технологические типы микросхем
- •Конструктивно-технологические типы микросхем
- •Конструктивно-технологические типы микросхем
- •2. Технологические основы микроэлектроники
- •2. Технологические основы микроэлектроники
- •2. ТЕХНОЛОГИЧЕСКИЕ ОСНОВЫ МИКРОЭЛЕКТРОНИКИ
- •Технологический цикл разделяют на два больших этапа – обработки пластин и сборочно-контрольной.
- •Технологические приемы создания микросхем
- •Технологические приемы создания микросхем
- •Диффузия примесей – технологическая операция легирования – введение примесей в пластину или эпитаксиальную
- •Основной механизм проникновения примесного атома в кристаллическую решетку состоит в последовательном перемещении по
- •Диффузия
- •Ионное легирование – технологическая операция введения примесей в поверхностный слой пластины или эпитаксиальной
- •Ионное легирование
- •Ионное легирование позволяет создавать слои с субмикронными горизонтальными размерами толщиной менее 0,1 мкм
- •Термическое окисление
- •Термическое окисление
- •Если после окисления удалить маску нитрида и провести неглубокое легирование донорами, то получим
- •Травление
- •Травление. Удаление участка двуокиси кремния.
- •Литография
- •После локальной засветки растворяются и удаляются незасвеченные участки.
- •Свет Литография
- •Литография
- •3.БИПОЛЯРНЫЕ СТРУКТУРЫ
- •3.1 Структура эпитаксиально-планарного транзистора
- •Структура эпитаксиально-планарного транзистора
- •МНОГОЭМИТТЕРНЫЕ ТРАНЗИСТОРЫ
- •ТРАНЗИСТОРЫ С ДИОДОМ ШОТКИ
- •РЕЗИСТОРЫ
- •КОНДЕНСАТОРЫ Структура МДП-конденсатора может быть следующей.
- ••При создании интегральной схемы памяти МОП -транзисторы с плавающим затвором очень
- ••Еще большее увеличение информационной емкости может быть достигнуто тем, что каждая ячейка памяти
- •Литература
- •Литература
- •Бескорпусной транзистор с упаковкой
- •Электроваккумные приборы
- •Мощный генераторный триод с радиатором
- •Электровакуумный пентод
- •Микросхемы памяти и транзисторы
Классификация и система обозначений
Третий элемент обозначает основные функциональные возможности прибора и номер разработки От 101 до 199 – диодные и незапираемые
триодные тиристоры малой мощности. От 401 до 499 – триодные запираемые тиристоры средней мощности,
Iср до 10 А.
Четвертый элемент – буква – обозначает типономинал прибора.
264
Графическое обозначение тиристоров
А |
|
А |
А |
|
К |
УЭ |
К |
К |
УЭ |
|
|
|
||
|
|
|
|
Динистор |
Тиристор |
Симистор |
управление по катоду
КН102Б – кремниевый,по анодунеуправляемый, малой мощности, 02 разработки, разновидности Б. КУ201К - кремниевый, управляемый, средней мощности, 01 разработки, разновидности К.
5.7 Применение тиристоров
Тиристоры применяются в силовых преобразователях электрической энергии:
-управляемые выпрямители,
-конверторы,
-в устройствах управления электроприводом. Существуют фототиристоры, управляемые с
помощью оптронов.
Они позволяют осуществить гальваническую развязку информационной маломощной системы управления от силовой части.
266
Применение тиристоров
Тиристоры применяются в управляемых выпрямителях.
В ряде случаев требуется не только преобразование переменного напряжения в постоянное, но и плавное регулирование выходного выпрямленного напряжения.
Наиболее экономичным способом является применение управляемых диодов - тиристоров.
Такие преобразователи называются регуляторами.
Под управлением подразумевается внешнее управление в том числе и автоматизированное.
267
Применение тиристоров
Простая схема регулятора.
|
Т |
Д1 |
|
|
|
|
|
|
|
U1 |
U2 |
|
|
|
Переменное |
Rн |
|
|
|
|
|
U1 |
||
напряжение |
|
CУ |
||
|
|
|||
|
iн |
|
Uу |
|
|
|
|
Д2
СУ – схема управления.
268
Применение тиристоров
Система управления формирует синхронно с напряжением U1 импульсы управления, фаза которых относительно напряжения U2 может регулироваться.
Тиристоры открываются и пропускают импульс тока при положительной полуволне на аноде и поступлении импульса тока на управляющий электрод.
269
Применение тиристоров
Нагрузка RН подключена к средней точке
трансформатора, Поэтому если на аноде Д1 действует
положительная полуволна напряжения U2, то на аноде Д2 действует отрицательная полуволна и диод Д2 закрыт.
В следующий полупериод Д1 закрывается, а Д2 – открывается.
Таким образом, выпрямитель является двухполупериодным.
270
Применение тиристоров
Регулирование выпрямленного напряжения заключается в изменении момента включения тиристора.
Угол сдвига фазы между напряжением включения тиристора и напряжением U2 называется углом управления и обозначается символом α.
271
|
Применение тиристоров |
Uу |
|
t1 |
t3 |
Uн |
t |
Iн |
U2m |
|
Uн.ср, Iн.ср
α 
t2
272
Применение тиристоров
Угол α изменяется и изменяется площадь по кривой синусоиды, изменяется среднее значение выпрямленного напряжения.
От момента to до момента t1 оба тиристора закрыты и ток в нагрузку не течет.
Вмомент времени t1 открывается тиристор 1 и по нему
ипо нагрузке течет импульс тока до момента времени t2.
Вмомент времени t3 открывается тиристор 2 и по нему
ипо нагрузке течет импульс тока в течение второго
полупериода напряжения U2.
273
