
- •ГОУ ВПО «СибГУТИ» УрТИСИ
- •Дисциплина учебного плана
- •Область науки и техники, занимающаяся разработкой методов создания электронных приборов и устройств, которые
- •Лекция 1 Введение
- •Цель обучения
- •В результате изучения дисциплины студенты должны:
- •Методическое обеспечение курса
- •Литература
- •Литература
- •Место дисциплины Электроника в учебном плане
- •Специальные диоды
- •Специальные диоды
- •Специальные диоды
- •Специальные диоды
- •Специальные диоды
- •Специальные диоды
- •стабилитроны
- •2.17 Классификация и система
- •2-й элемент – буква – подкласс прибора:
- •3-й элемент – число – основные функциональные возможности прибора:
- •Классификация и система обозначений диодов
- •Диодная сборка
- •Тема 3. Биполярные транзисторы
- •Транзисторы
- •Биполярные транзисторы (далее транзисторы)
- •Физические процессы в транзисторе Транзисторы
- •Физические процессы в транзисторе Транзисторы
- •Транзисторы
- •Транзисторы
- •Транзисторы
- •Транзисторы
- •3.3 Вольт-амперные характеристики транзистора (ВАХ)
- •3.3 Вольт-амперные характеристики транзистора (ВАХ)
- •Модель Эберса-Молла
- •Транзисторы
- •Транзисторы
- •Транзисторы
- •Транзисторы
- •ВАХ схемы общий эмиттер
- •Параметры транзистора
- •Биполярные транзисторы
- •3.5 Инерционные свойства транзисторов
- •Инерционные свойства транзисторов
- •Нарастание тока коллектора происходит в течение
- •За одну постоянную времени τ экспонента нарастает до уровня 0,63·∆Iк.
- •3.6 Шумы транзистора
- •Шумы транзистора
- •3.7 Влияние изменения температуры на ВАХ
- •Влияние температуры
- •3.8Предельные режимы работы транзистора
- •3.9Классификация и система обозначений
- •Классификация и система обозначений
- •Классификация и система обозначений
- •Классификация и система обозначений
- •система обозначений
- •Транзисторы
- •Биполярные транзисторы
- •Эквивалентные схемы замещения транзисторов
- •физическая Т-образная эквивалентная схема
- •Эквивалентная схема для включения транзистора по схеме общий
- •физическая Т-образная эквивалентная схема
- •Эквивалентная схема составлена для постоянного тока. Схему можно распространить и для переменного тока,
- •rэ - дифференциальное сопротивление перехода Э-Б, включенного в прямом направлении.
- •Наличие в схеме реактивного элемента в виде емкости говорит о том, что в
- •Параметры эквивалентной схемы:
- •Генератор тока В·Iб можно заменить генератором напряжения на основании теоремы об эквивалентном генераторе.
- •физическая Т-образная эквивалентная схема
- •Вид транзистора КТ908А
- •Биполярные транзисторы
- •Транзистор как линейный четырехполюсник
- •Транзистор как линейный четырехполюсник
- •Представим четырехполюсник в виде системы линейных дифференциальных уравнений.
- •Введем параметры.
- •Запишем систему уравнений четырехполюсника
- •Упростим электрическую схему четырехполюсника
- •Найдем связь между параметрами
- •связь между параметрами
- •Способы получения h- параметров
- •Способы получения h- параметров с помощью вольт-амперных характеристик.
- •Получение h- параметров с помощью вольт-амперных характеристик
- •h- параметры
- •Первый отечественный транзистор П1
- •Тема 4. Полевые транзисторы
- •полевые транзисторы
- •4.1 Классификация ПТ
- •Классификация ПТ
- •Классификация ПТ
- •4.2 Принцип работы ПТ
- •Электрод, через который в канал втекают носители тока называется исток (и).
- •Принцип работы ПТ
- •Принцип работы ПТ
- •Принцип работы ПТ
- •4.3 Вольт-амперные характеристики ПТ
- •4.3 Вольт-амперные характеристики ПТ
- •Вольт-амперные характеристики ПТ
- •4.4Параметры ПТ
- •Параметры ПТ
- •Возможны три схемы включения полевого
- •4.5Полевые транзисторы с изолированным затвором
- •Особенность транзисторов данного типа – очень высокое входное сопротивление, поскольку управляющий затвор отделен
- •МДП транзистор со встроенным каналом
- •Встроенный канал
- •МДП транзисторы с индуцированным каналом
- •МДП транзисторы с индуцированным каналом
- •МЕП транзисторы
- •МЕП - транзисторы (металл-полупроводник)
- •Полевые транзисторы с изолированным затвором
- •4.6 Ячейка памяти на основе МОП-транзистора
- •Ячейка памяти на основе МОП-транзистора
- •ячейка флэш-памяти
- •ячейка флэш-памяти
- •4.7 Модели полевого транзистора
- •Модели полевого транзистора
- •Модели полевого транзистора
- •4.8 Классификация и система обозначений
- •Система обозначений полевого транзистора
- •5.1 Тиристоры
- •Тиристоры
- •5.2 Устройство тиристора
- •Контакт к внешнему p-слою называют анодом, а к внешнему n-слою - катодом. Внутренние
- •Рассмотрим физические процессы в тиристоре, для чего представим его в виде двух биполярных
- •На физические процессы в тиристоре основное влияние оказывают два фактора:
- •5.3 Динистор
- •динистор
- •динистор
- •динистор
- •динистор
- •динистор
- •динистор Динисторы применяются в быстродействующих системах защиты схем, нагрузки от перенапряжения.
- •5.4 Тиристор
- •Тиристоры
- •5.5Симисторы
- •Симисторы
- •Симисторы
- •5.6Классификация и система обозначений
- •Классификация и система обозначений
- •Графическое обозначение тиристоров
- •5.7 Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •Применение тиристоров
- •тиристоры
- •Тема 6. Усилительный каскад на транзисторе
- •Усилители
- •Усилители
- •Усилители
- •Усилители
- •Усилители
- •Усилители
- •Усилители Графическое представление амплитудной характеристики
- •6.2Включение транзистора
- •Включение транзистора в схему усилительного каскада
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Режим работы транзистора
- •Начальный режим работы транзистора
- •Начальный режим работы транзистора
- •Начальный режим работы транзистора
- •Начальный режим работы транзистора
- •Ячейка усилителя на электронных лампах. Вверху виден усилитель в интегральном исполнении,
- •6.3 Методы стабилизации положения РТ
- •Как отмечалось ранее с повышением температуры транзистора его параметры изменяются таким образом, что
- •С повышением температуры транзистора его ток базы увеличивается, ток коллектора также увеличивается на
- •Схема с эмиттерной стабилизацией
- •эмиттерная стабилизация положения РТ
- •эмиттерная стабилизация положения РТ
- •коллекторная стабилизация положения РТ
- •коллекторная стабилизация положения РТ
- •Термокомпенсация положения РТ
- •Термостабилизация
- •Методы стабилизации положения РТ могут применяться совместно и не противоречат друг другу.
- •6.4 Прохождение сигнала через усилительный каскад
- •Подключим ко входу усилителя источник
- •Под действием этих напряжений в цепи базы потечет
- •Входная цепь усилительного каскада или цепь базы транзистора
- •Коллекторная цепь транзистора В коллекторной цепи также течет ток
- •Коллекторная цепь транзистора
- •Коллекторная цепь транзистора
- •Из построения видно:
- •Из построения видно:
- •Из построения следует: амплитудное значение напряжения сигнала равно 10 мВ, амплитудное значение напряжения
- •6.5 Усилительный каскад
- •Усилительный каскад. Назначение элементов
- •Усилительный каскад. Назначение элементов
- •Сопротивление Rэ обеспечивает обратную связь,
- •Усилитель в интегральном исполнении
- •6.6 Параметры усилительного каскада
- •6.6.1 Каскад ОЭ
- •Каскад ОЭ
- •Каскад ОЭ
- •Каскад ОЭ
- •Каскад ОЭ
- •Параметры каскада ОЭ
- •Преобразуем схему согласно условиям
- •Определим параметры каскада
- •параметры каскада
- •Оценим значения параметров
- •6.6.2 Каскад ОБ
- •Эквивалентная схема
- •Параметры усилительного каскада ОБ
- •Параметры усилительного каскада ОБ
- •6.6.3 Каскад ОК
- •Эквивалентная схема
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Таким образом, каскад ОК имеет следующие
- •Параметры каскада ОК
- •Параметры каскада ОК
- •6.7 Методы улучшения параметров каскадов
- •Анализ параметров каскадов
- •Эмиттерный повторитель на составном транзисторе схема Дарлигтона
- •Эмиттерный повторитель на составном транзисторе схема Шиклаи
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Источник тока
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Параметры каскада ОК
- •Источник напряжения
- •Пример источника напряжения
- •Подключение каскада ОК
- •Параметры каскада
- •Каскад ГСТ
- •Каскад ГСТ
- •Схема «токовое зеркало»
- •Транзистор 2 охвачен 100%-ной обратной связью, т.к. его выход (вывод коллектора) соединен с
- •Каскад ГСТ
- •Усилительный каскад с ГСТ ГСТ включим в коллекторную цепь усилительного
- •Каскад ГСТ
- •Каскад ГСТ
- •Каскад с ГСТ
- •Каскад с ГСТ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Делитель напряжения с элементом, имеющим нелинейную ВАХ
- •Ограничитель напряжения со стабилитроном КС147А
- •На прямой ветви до напряжения 0,6 В диод закрыт. Его сопротивление много больше
- •Образуется делитель напряжения R – rд.
- •На обратной ветви до напряжения Uст стабилитрон также закрыт, его сопротивление много больше
- •Поменяем местами диод и стабилитрон
- •Ограничитель напряжения со стабилитроном КС147А
- •Применение выпрямительных диодов
- •Применение выпрямительного диода
- •Применение выпрямительного диода
- •Применение выпрямительного диода
- •Кристалл интегральной микросхемы
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Бескорпусные транзисторы
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Второй уровень - структурная схема.
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Основы микроэлектроники
- •Кристалл интегральной микросхемы
- •Конструктивно-технологические типы ИМС
- •Конструктивно-технологические типы ИМС
- •Конструктивно-технологические типы микросхем
- •Конструктивно-технологические типы микросхем
- •Конструктивно-технологические типы микросхем
- •Конструктивно-технологические типы микросхем
- •Конструктивно-технологические типы микросхем
- •2. Технологические основы микроэлектроники
- •2. Технологические основы микроэлектроники
- •2. ТЕХНОЛОГИЧЕСКИЕ ОСНОВЫ МИКРОЭЛЕКТРОНИКИ
- •Технологический цикл разделяют на два больших этапа – обработки пластин и сборочно-контрольной.
- •Технологические приемы создания микросхем
- •Технологические приемы создания микросхем
- •Диффузия примесей – технологическая операция легирования – введение примесей в пластину или эпитаксиальную
- •Основной механизм проникновения примесного атома в кристаллическую решетку состоит в последовательном перемещении по
- •Диффузия
- •Ионное легирование – технологическая операция введения примесей в поверхностный слой пластины или эпитаксиальной
- •Ионное легирование
- •Ионное легирование позволяет создавать слои с субмикронными горизонтальными размерами толщиной менее 0,1 мкм
- •Термическое окисление
- •Термическое окисление
- •Если после окисления удалить маску нитрида и провести неглубокое легирование донорами, то получим
- •Травление
- •Травление. Удаление участка двуокиси кремния.
- •Литография
- •После локальной засветки растворяются и удаляются незасвеченные участки.
- •Свет Литография
- •Литография
- •3.БИПОЛЯРНЫЕ СТРУКТУРЫ
- •3.1 Структура эпитаксиально-планарного транзистора
- •Структура эпитаксиально-планарного транзистора
- •МНОГОЭМИТТЕРНЫЕ ТРАНЗИСТОРЫ
- •ТРАНЗИСТОРЫ С ДИОДОМ ШОТКИ
- •РЕЗИСТОРЫ
- •КОНДЕНСАТОРЫ Структура МДП-конденсатора может быть следующей.
- ••При создании интегральной схемы памяти МОП -транзисторы с плавающим затвором очень
- ••Еще большее увеличение информационной емкости может быть достигнуто тем, что каждая ячейка памяти
- •Литература
- •Литература
- •Бескорпусной транзистор с упаковкой
- •Электроваккумные приборы
- •Мощный генераторный триод с радиатором
- •Электровакуумный пентод
- •Микросхемы памяти и транзисторы


ГОУ ВПО «СибГУТИ» УрТИСИ
Кафедра общепрофессиональных дисциплин
Направление подготовки 210400 – «Телекоммуникации»
Екатеринбург 2013


Дисциплина учебного плана
Курс подготовил
Паутов Валентин Иванович Доцент, кандидат технических наук, доцент кафедры общепрофессиональных дисциплин.
Лекции читает Паутов Валентин Иванович

Область науки и техники, занимающаяся разработкой методов создания электронных приборов и устройств, которые используются для передачи, обработки и хранения информации

Лекция 1 Введение
Курс базируется на физико-математической подготовке, которую студенты получают при изучении дисциплин
-Физические основы электроники.
-Физика.
-Математика.
-Основы теории цепей.
Естественным продолжением курса Электроника является курс Основы схемотехники.

Цель обучения
Научить:
--Осуществлять синтез электронных устройств с применением современных интерактивных программ Multisim и MathLab;
--Проводить расчёты электрических режимов элементов электронных схем;
--Формулировать технические требования к разработке электронных устройств.
7

В результате изучения дисциплины студенты должны:
Знать:
-- физические процессы, протекающие в электронных приборах, их устройство, характеристики и параметры;
Уметь:
-- применять полупроводниковые приборы и интегральные микросхемы в аппаратуре связи,
радиовещания и телевидения;
Владеть:
-- навыками экспериментального исследования характеристик и измерения параметров приборов.

Методическое обеспечение курса
•Государственный образовательный стандарт высшего профессионального образования для направления «Телекоммуникации».
•Рабочая программа курса Электроника, утвержденная методическим советом ГОУ ВПО «СибГУТИ» УрТИСИ 2004 г.

Литература
1. Миловзоров О.В., Электроника: Учебник для вузов. /О.В. Миловзоров, И.Г. Панков. М.: Высшая школа, 2004.
2. Лачин В.И., Савелов Н.С. Электроника: Учеб. пособие. Ростов н/Д: изд-во «Феникс», 2000 г.
3.Прянишников В.А. Электроника: Курс лекций. – СПб.: Корона-принт, 1998.
4.Тырышкин И.С. Физические основы полупроводниковой электроники. М.: Высшая шк. 2000.

Литература
5.Бобриков Л.З. Электроника. – СПб.: Питер, 2004.
6.Гусев В.Г., Гусев Ю.М. Электроника и микропроцессорная техника. - М.: Выс. школа, 2005.
7.Беспалов В.В., Логинов В.В. Физические основы электроники: Конспект лекций. Екатеринбург: УрТИСИ ГОУ ВПО «СибГУТИ»2006.
8.Матвиенко В.А. Характеристики и параметры полупроводниковых приборов. Лабораторный практикум. Учеб.пособие. Екатеринбург: УрТИСИ ГОУ ВПО «СибГУТИ»2006.