
- •6 Анализ и синтез сетей связи
- •6.1 Проблематика расчета сетей
- •5.2 Элементы математического аппарата анализа и синтеза Графы, их свойства и способы представления
- •6.3 Анализ и синтез сетей связи
- •6.1 Сеть без обходных направлений
- •1) Исходные потоки вызовов являются пуассоновскими;
- •6.4 Динамика развития сетей связи
- •6.5 Перспективы развития сетей и услуг электросвязи
6.1 Сеть без обходных направлений
Пусть соединительный тракт между входом 1–ым и j - ым выходом содержит n последовательно связанных коммутационных узлов. Поступающий на i-ый узел поток вызовов делится на ri потоков в соответствии с числом направлений, организуемых на узле коммутации. Пусть на каждом направлении i-ого узла число соединительных линий рассчитывается при величине потерь pi (i=1, 2, … ,n). Определим результирующую величину потерь P между 1-ым входом и j-ым выходом через n узлов сети. Исследование сложных коммутационных систем показали, что величина потерь P зависит от величины потерь на отдельных ступенях искания pi (i=1, 2, …,n), числа ступеней искания n, числа направлений r, включаемых в каждую ступень искания, т.е. P = f (p1, p2, … ,pn, n, r1, r2, … ,rn). При этом величина потерь P находится в пределах
Pmax
≤ P
≤ 1 –
,
(6.5)
где Pmax = max{pi, i = 1, 2, … , n} – максимальное из значений потерь на коммута-ционном участке сети. Если на входы и выходы любого числа узлов включено одно направление, то имеет место равенство
P = Pmax (6.6)
В другом предельном случае при r → ∞ процессы обслуживания потоков, поступающих на направления разных узлов, независимы и математическое ожидание величины потерь P при установлении соединения между входом и выходом сети через n узлов определяется из выражения:
P=
(6.7)
Значение величины pi зависит от многих факторов и может быть рассчитано с использованием инженерных методов. Например, по первой формуле Эрланга. В реальных узлах величина r конечна. Так как каждый вызов занимает соединительные устройства нескольких узлов, то состояние этих ступеней не являются независимыми. Кроме того, из-за потерь на ступенях искания меняется характер потока вызовов, поэтому выше приведенная формула является приближенной. Однако формула 6.5 нашла широкое применение для решения задач анализа и синтеза автоматически коммутируемых телефонных сетей без обходных направлений как без учета надежности элементов сети, так и учетом их надежности.
Анализ и синтез сети с коммутацией каналов и обходными направлениями.
Принципы построения телефонной сети с обходными направлениями
Идею построения сети с обходными направлениями рассмотрим на следующем примере. Пусть требуется соединить между собой три телефонные станции i, j и к (рис.6.2). При отсутствии обходных направлений это можно осуществить двумя известными способами: либо соединить станции по принципу "каждая с каждой" (рис. 6.2(а)), либо по радиально-узловому принципу (рис. 6.2(б)). Выбор того или иного способа соединения в основном определяется величинами потоков сообщений между станциями и стоимостью соединительных пиний в каждом направлении. Если между станциями имеет место значительное тяготение или же при малом тяготении расстояние между ними небольшое, то в этих случаях целесообразно связать эти станции по принципу "каждая с каждой". Если же между рассматриваемыми станциями существует незначительное тяготение, а расстояние между ними значительное, то желательно применить радиально-узловой принцип построения телефонной сети, используя, например, станцию "к" в качестве транзитной станции. При этом каждое радиальное направление должно быть рассчитано на обслуживание, как оконечной нагрузки, так и транзитной. Естественно предположить, что при определенных условиях (величинах нагрузки между станциями и стоимостью соединительных линий) целесообразным с экономической точки зрения будет такое решение, когда между станциями, например, i и j, будет проложено некоторое число соединительных линий. Этих линий недостаточно для обслуживания нагрузки между станциями i и j при заданной величине потерь, а избыток сообщений, не пропущенный этими линиями, будет направляться в обход через транзитную станцию"к" (рис.6.2в). Таким образом, вызов между станцией i и j будет потерян, если будут заняты все соединительные линии на участках ik или kj. В данной схеме направление ij будет называться прямым, а направление ikj , состоящее из двух участков соединительных линий i k и kj - обходным.
Рис. 6.2 Способы связи телефонных станций между собой.
Использование обходных направлений на телефонной сети позволяет:
а) достигнуть повышения пропускной способности линий при минимальных затратах на линейные сооружения;
б) значительную часть сообщений пропустить сравнительно коротким путём, что обуславливается большим количеством прямых направлений;
в) обеспечить высокую надежность связи, т.к. в случае повреждения какой-либо линии передачи или коммутационного оборудования на одной из станций соединения будут устанавливаться через линии обходных направлений;
г) в некоторых случаях осуществить расширение ёмкости сети, не осуществляя при этом реорганизацию линейных сооружений. При этом среднее качество обслуживания абонентов на всей сети в целом ухудшится незначительно.
Наряду с указанными достоинствами сети с обходными направлениями имеют недостатки, а именно:
а) планирование таких сетей и нахождение оптимального варианта является трудоёмкой задачей;
б) затрудняется контроль работы отдельных направлений и нахождение мест повреждений, а также определение момента времени, когда необходимо произвести расширение того или иного направления для улучшения качественных показателей работы сети;
в) выход из строя кабеля или резкое повышение нагрузки в одном из направлений влияет на качество обслуживания вызовов во всех остальных направлениях.
При рассмотрении сети с обходными направлениями будем использовать следующие понятия:
1.Прямое направление - совокупность каналов непосредственно связывающих две какие-либо станции или узла автоматической коммутации. Остальные пути будем называть обходными.
2.Избыточная нагрузка - часть предложенной какому-либо направлению нагрузки, не пропущенная линиями этого направления и поступающая затем на обходное направление.
3. Направление высокого использования - направление, количество линий в котором рассчитывается при высоких значениях потерь. Направление с высоким использованием линий может быть либо прямым направлением, либо промежуточным обходным. Последнее имеет место в том случае, когда избыточная нагрузка последовательно предлагается нескольким обходным направлениям.
4. Направление последнего выбора - направление, на которое в самую последнюю очередь поступают все избыточные потоки вызовов от других направлений (прямых и обходных).
Направление последнего выбора может использоваться не только для обслуживания избыточных потоков вызовов, но и обслуживать потоки вызовов между станциями, для которых направления последнего выбора являются прямыми направлениями. Направление последнего выбора рассчитывается на высокое качество обслуживания вызовов, поступающих на это направление.
Параметры избыточной нагрузки, не пропущенной линиями прямого направления.
Исследования, проведенные американским ученым Р.И. Вилкинсоном, показали, что для практических целей избыточную нагрузку достаточно характеризовать двумя параметрами: математическим ожиданием m(v) и d(v) дисперсией , которое можно рассчитывать по формулам:
m(V)
= A*Ev (A) (6.8)
d(V) = m(V)*[1- m(V) + A/(V+1+ m(V)- A)], (6.9)
где A - математическое ожидание интенсивности нагрузки, поступающей на пучок емкостью V линий прямого направления;
V- число линий в полнодоступном пучке прямого направления; EV (A) – функция Эрланга (первая формула Эрланга).
В общем случае на обходное направление могут поступать избыточные потоки от нескольких направлений с высоким использованием линий. Если на один и тот же пучок поступает несколько статистически независимых друг от друга потоков со средними значениями избыточной нагрузки m(V1), m(V2),…, m(Vk) и дисперсиями избыточной нагрузки d(V1), d(V2), … , d(Vk), то среднее значение интенсивности нагрузки и дисперсия объединенного потока равны сумме соответствующих параме-тров этих потоков:
Mобх
=
,
(6.10)
Dобх
=.
(6.11)
Метод эквивалентной замены
Рассмотрим фрагмент сети с обходными направлениями (рис. 6.3).
Рис. 6.3 Фрагмент сети с обходными направлениями
На обходное направление (1-ый участок) поступают избыточные потоки с напра-влений высокого использования, связывающих узел i c узлами 1, 2, …, j. Нагрузка, не обслуженная линиями обходного направления, теряется. Для оценки качества обслуживания в сети с обходными направлениями необходимо уметь определять параметры потерянной на обходном направлении нагрузки. Представим фрагмент сети (рис. 6. 3) в виде схемы ступенчатого включения (рис.6.4(а)). Параметры нагрузки, поступающей на 1 участок (iK) обходного направления, равны: Mобх = m(i1) + m(i2) + … + m(ij), Dобх = d(i1) + d(i2) + … + d(ij).
а) б)
Рисунок 6.4 Ступенчатая схема сети с обходами(а) и эквивалентная схема(б)
Для определения параметров mпот и dпот нагрузки, потерянной на обходном
направлении (участок ik), воспользуемся методом "эквивалентной замены"
Вилкинсона. Сущность метода заключается в замене схемы ступенчатого включения
( рис. 6.4(а)) эквивалентной полнодоступной схемой (рис. 6.5 (б)), состоящей из S+ Vобх линий, на которые предлагается нагрузка Aэ, создаваемая простейшим потоком вызовов. При этом величина простейшего потока должна быть такой, что-бы избыточная нагрузка от S линий полнодоступного пучка имела бы параметры M(S) и D(S) те же, что и суммарная избыточная нагрузка, поступающая на линии обходного направления в реальной схем - M(S) = Mобх; D(S) = Dобх.
Применяя к эквивалентной полнодоступной схеме формулы (6.8) и (6.9), получим
M(S)
= Aэ*Es
(Aэ)
(6.12)
D(S) = M(S)*[1- M(S) + Aэ/(S+1+ M(S)- Aэ)], (6.13)
Зная параметры Mобх и Dобх и, следовательно M(S) и D(S), путём подбора определяются Уэ и S. Тогда среднее значение потерянной на обходном направлении нагрузки будет равно:
mпот = Aэ*Es(Aэ)+ Vобх (Aэ) (6.14)
Дисперсия потерянной на обходном направлении нагрузки определяется из выражения:
dпот = mпот *[1- mпот + Aэ/(S + Vобх + mпот – Aэ)] (6.15)
Для практических расчётов Aэ и S при известных M(S) и D(S) можно использовать приближенные формулы, предложенные шведским учёным Раппом.
Aэ = D(S) + 3*(D(S)/M(S))*(D(S)/M(S) –1) (6.16)
S=Aэ*(+D(S))/(
+D(S)-M(S))-M(S)-1
(6.17)
Метод эквивалентной замены может быть использован для оценки качества обслуживания вызовов в сети с обходными направлениями. При этом необходимо учитывать, что потери возникают только на направлении последнего выбора, т.е. на обходном направлении, на которое избыточная нагрузка поступает в последнюю очередь. При этом принципиальное различие в оценке потерь имеют следующие две схемы организации связи:
а
б) направлению последнего выбора кроме избыточных потоков предлагается нагрузка, создаваемая простейшим потоком вызовов.
Метод эквивалентной замены используется как для решения задач анализа, так
и решения задач синтеза сетей с обходными направлениями.
Итерационные методы расчета параметров качества обслуживания на сетях с коммутацией каналов.
При проектировании сетей с обходными направлениями и при управлении такими сетями часто появляется необходимость в определении величин и характера суммарной нагрузки на каждый участок сети, вероятностей потерь на различных участках, вероятностей потерь между каждой парой узлов, а также распределения этих потерь по путям и транзитным узлам сети и т. д.
При расчете делается ряд допущений, определяющих характер потоков нагрузки и их распределение в рассматриваемой модели сети. Эти допущения определяют степень приближения рассматриваемой модели к реальной сети и точность расчета.
При определении параметров качества обслуживания на сети делаются следующие допущения: