
- •1 Основные понятия
- •1.1 Первичные источники
- •1.2 Вторичные источники
- •1.2.1 Структурная схема электроснабжения предприятия электросвязи
- •1.2.2 Структурная схема электроснабжения предприятия радиосвязи
- •1.3 Устройства бесперебойного электропитания
- •Убп постоянного тока
- •1.3.2 Убп переменного тока
- •1.4 Структурные схемы выпрямительных устройств
- •1.5 Показатели вторичных источников
- •1.5.1 Коэффициент полезного действия
- •1.5.2 Коэффициент мощности
- •1.5.3 Коэффициент пульсаций
- •1.5.4 Внешняя характеристика
- •1.5.5 Масса и объём
- •1.6 Примеры задач с решениями
- •Магнитные цепи
- •2.1 Магнитные материалы
- •50Нп толщиной 0,05 мм (50 микрон)
- •2.2 Потери в магнитопроводе
- •2.3 Основная формула трансформаторной эдс
- •2.4 Управление индуктивностью
- •2.5 Трансформаторы
- •2.5.1 Основные понятия и классификация трансформаторов
- •2.5.2 Режимы работы и схема замещения трансформатора
- •2.5.3 Внешняя характеристика трансформатора
- •2.5.4 Коэффициент полезного действия трансформатора
- •2.5.5 Мощность трансформатора
- •2.5.6 Трёхфазные трансформаторы
- •2.5.7 Импульсные трансформаторы
- •2.6 Примеры задач с решениями
- •3 Выпрямители и фильтры
- •3.1 Преобразование переменного тока в постоянный
- •3.2 Неуправляемый вентиль и его характеристики
- •3.3 Схемы выпрямления
- •3.4 Расчётные соотношения для неуправляемых выпрямителей
- •3.5 Сглаживающие фильтры
- •3.5.1 Пассивные сглаживающие фильтры
- •3.5.2 Активные сглаживающие фильтры
- •Индуктивный характер нагрузки
- •3.7 Ёмкостный характер нагрузки
- •Управляемые выпрямители
- •Примеры задач по выпрямителям с решениями
- •Определите среднее значение напряжения (постоянную составляющую) u0.
- •Пример 3.9.5
- •Из линейности внешней характеристики выпрямителя следует:
- •3.10 Примеры задач по сглаживающим фильтрам с решениями
- •Пример 3.10.4
- •Определите уровни токов и напряжений (расчёт по постоянному току рис. 3.62б и в момент коммутации). Изобразите ожидаемые диаграммы переходных процессов при периодической коммутации ключа к.
- •Пример 3.10.5 Исходные данные: Схемы пассивного (а) и активного (б) сглаживающих фильтров приведены на рисунке 3.64.
- •4 Стабилизаторы
- •4.1 Основные определения
- •4.2 Параметрические стабилизаторы
- •4.2.1 Параметрические стабилизаторы напряжения постоянного тока
- •4.2.2 Параметрические стабилизаторы напряжения переменного тока
- •Компенсационные стабилизаторы напряжения постоянного тока
- •Импульсные стабилизаторы
- •4.6 Примеры задач по стабилизаторам с решениями Пример 4.6.1
- •Падение напряжения на балластном резисторе:
- •Пример 4.6.7 Исходные данные: Для схемы мостового стабилизатора напряжения параметры используемых стабилитронов приведены на рисунке 4.34.
- •Определите коэффициент стабилизации по напряжению.
- •Пример 4.6.12
- •5 Преобразователи
- •5.1 Основные определения
- •5.2 Однотактные преобразователи
- •5.3 Двухтактные преобразователи
- •5.4 Резонансные инверторы
- •5.5 Примеры задач по преобразователям с решениями
- •6 Корректор коэффициента мощности
- •6.1 Основные понятия
- •6.2 Разновидности ккм
- •7. Практические схемы выпрямительных устройств
- •7.1 Выпрямитель с бестрансформаторным входом вбв 24/3
- •7.2 Источник бесперебойного питания ибп5-48/36
- •7.2.1 Общая характеристика
- •7.2.2 Схема выпрямительного модуля бп-500/48
- •7.3 Установка электропитания prs
- •7.3.1 Общая характеристика системы
- •7.3.2 Структурная схема выпрямительного модуля smps
- •8 Список литературы
1.4 Структурные схемы выпрямительных устройств
Одним из основных узлов СЭП является выпрямительное устройство (ВУ), преобразующее род тока – из переменного в постоянный. Рассмотрим обобщённую схему ВУ (рисунок 1.16) и назначение её узлов.
Рисунок 1.16 – Обобщённая схема выпрямительного устройства
На этом рисунке обозначено: Тр – трансформатор преобразует уровень напряжения и обеспечивает гальваническую развязку сети и нагрузки; СВ – система вентилей преобразует род тока из переменного в постоянный по направлению; Ф – сглаживающий фильтр (ФНЧ) сглаживает пульсации выпрямленного напряжения; СВН – стабилизатор выходного напряжения (при необходимости). Эта традиционная, классическая схема выпрямления.
Используют также и выпрямители с бестрансформаторным входом (ВБВ). Структурная схема такого выпрямителя приведена на рисунке 1.17.
Рисунок 1.17 – Схема выпрямителя с бестрансформаторным входом
В этой схеме трансформатор Тр и сглаживающий фильтр СФ2 работают на частоте преобразования инвертора, которая составляет десятки килогерц и поэтому масса и объём ВБВ значительно меньше чем у классических выпрямителей. Обратная связь позволяет довольно просто стабилизировать выходное напряжение U0.
Схема может быть дополнена: предварительным сетевым стабилизатором (то есть иметь два или три контура стабилизации), блоком контроля, блоком плавного включения, корректором коэффициента мощности, фильтрами помех и устройствами защиты.
Очевидно, что рассмотренная структурная схема ВУ вырабатывает один типономинал (градацию) напряжения, то есть это одноканальный источник питания.
Современные ВУ часто являются многоканальными, т.е. обеспечивают питание сразу несколько нагрузок. Здесь ряд функциональных звеньев могут быть общими, а разветвление по каналам производится в любом месте, но чаще это делается в трансформаторе. Отдельные каналы могут содержать разное число звеньев, в зависимости от требований к напряжению питания. Для повышения КПД вторичного источника стремятся использовать совмещённые функции звеньев, например регулируемый инвертор или конвертор. Можно также использовать регулируемый выпрямитель, который управляется выходным напряжением U0. Такие источники называют стабилизирующими по переменному току.
Примером иной компоновки ВУ является вольтодобавочная схема, которая может быть выполнена на постоянном или переменном токе и иллюстрируется рисунком 1.18.
Рисунок 1.18 – Вольтодобавочная схема
Здесь Е0 = Е1 + Е2 и ВИП преобразует только часть энергии, передаваемой в нагрузку ( формирует напряжение Е1 – вольтодобавку). Регулируя вольтодобавку, можно получить Е0 с требуемой стабильностью. Преобразуется только часть мощности нагрузки, поэтому результирующий КПД выше и конструкция проще, чем классических ВУ.
Аналогично можно выполнить и ампердобавочные схемы, как показано на рисунке 1.19.
Рисунок 1.19 – Схема ампердобавки
Здесь ВИП2 включается в работу только тогда, когда мощности ВИП1 уже недостаточно для питания нагрузки. Ампердобавку не следует путать с параллельной работой, когда источники равномерно принимают нагрузку.