
- •Е.А. Субботин, н.Ф. Лапина Мультисервисные сети
- •Содержание
- •6 Конвергенция 89
- •7 Проектирование участка магистрали dwdm 101
- •Введение
- •1 Технология синхронной цифровой иерархии sonet/sdh
- •1.1 Общие сведения
- •1.2 Стек протоколов
- •1.3 Формат кадра
- •1.4 Топология сети sdh
- •Топология "кольцо"
- •1.5 Архитектура сети sdh
- •1.6 Преимущества и недостатки
- •2 Технология атм
- •2.1 Основные принципы технологии атм
- •2.2 Стек протоколов атм
- •2.2.1 Уровень адаптации aal
- •2.2.2 Протокол атм
- •2.3 Передача трафика ip через сети атм
- •2.4 Преимущества и недостатки
- •3 Gigabit Ethernet
- •3.1 Общие сведения
- •3.2 Хронология разработки стандарта
- •3.3 Архитектура стандарта Gigabit Ethernet
- •3.4 Интерфейс 1000Base -X
- •3.5 Особенности использования многомодового волокна
- •3.6 Интерфейс 1000Base-t
- •3.7 Уровень mac
- •3.8 Использование технологии Ethernet для построения мультисервисных сетей
- •3.8.1 Качество обслуживания (Quality of Service, QoS)
- •3.8.2 Модель службы QoS
- •3.8.3 Технология DiffServ в сетях Ethernet
- •3.8.4 Технология Multi Protocol Label Switching
- •3.9 Технология 10 Gigabit Ethernet
- •3.9.1 Многомодовое волокно и 10-Gigabit Ethernet
- •3.9.2 Одномодовое волокно и 10-Gigabit Ethernet
- •3.9.3 Анализ конструкции волокна для сетей 10-Gigabit Ethernet
- •4 Технология Dense Wavelength-Division Multiplexing
- •4.1 Основные сведения
- •4.2 Мультиплексоры dwdm
- •4.3 Пространственное разделение каналов и стандартизация dwdm
- •4.4 Применение оптических усилителей efda
- •4.5 Классификация edfa по способам применения
- •4.6 Dwdm и мультисервисные сети
- •4.7 Взаимодействие с ip–сетями
- •4.8 Практическое применение технологии dwdm
- •4.9 Особенности и достоинства технологии dwdm
- •5 Технология Multi Protocol Label Switching
- •5.1 Общие сведения
- •5.2 Принцип коммутации
- •5.3 Элементы архитектуры
- •5.3.1 Метки и способы маркировки
- •5.3.2 Стек меток
- •5.3.3 Привязка и распределение меток
- •5.3.4 Построение коммутируемого маршрута
- •5.4 Mpls Traffic Engineering
- •5.5 Практическое применение mpls
- •5.6 Преимущества технологии mpls
- •5.7 Generalized Multiprotocol Lambda Switching
- •5.7.1 Наложенная и одноранговая модели
- •5.7.2 Преимущества технологии gmpls
- •5.7.3 Перспективы gmpls
- •6 Конвергенция
- •6.1 Сети конвергенции на основе atm или mpls
- •6.2 Качество обслуживания
- •6.3 Взаимодействие atm и ip/mpls
- •6.4 Е-mpls
- •7 Проектирование участка магистрали dwdm
- •7.1 Расчет капитальных вложений
- •7.2 Расчет затрат на эксплуатацию
- •7.3 Расчет доходов
- •7.4 Расчет налогов
- •Заключение
- •Литература
1.2 Стек протоколов
Стек протоколов и основные структурные элементы сети SONET/SDH показаны на рисунке 1.1.
Рисунок 1.1 - Стек протоколов и структура сети SONET/SDH
Ниже перечислены устройства, которые могут входить в сеть технологии SONET/ SDH.
Терминальные устройства (Terminal, Т), называемые также сервисными адаптерами (Service Adapter, SA), принимают пользовательские данные от низкоскоростных каналов технологии PDH (типа Т1/Е1 или ТЗ/ЕЗ) и преобразуют их в кадры STS-n. (Далее аббревиатура STS-n используется как общее обозначение для кадров SONET/SDH.)
Мультиплексоры (Muliplexers) принимают данные от терминальных устройств и мультиплексируют потоки кадров разных скоростей STS-n в кадры более высокой иерархии STS-m.
Мультиплексоры «ввода-вывода» (Add-Drop Multiplexers) могут принимать и передавать транзитом поток определенной скорости STS-n, вставляя или удаляя «на ходу», без полного демультиплексирования, пользовательские данные, принимаемые с низкоскоростных входов.
Цифровые кросс-коннекторы (Digital Cross-Connect, DCC), называемые также аппаратурой оперативного переключения (АОП), предназначены для мультиплексирования и постоянной коммутации высокоскоростных потоков STS-n различного уровня между собой (на рис. 1.1 не показаны). Кросс-коннектор представляет собой разновидность мультиплексора, основное назначение которого - коммутация высокоскоростных потоков данных, возможно, разной скорости. Кросс-коннекторы образуют магистраль сети SONET/SDH.
Регенераторы сигналов, используемые для восстановления мощности и формы сигналов, прошедших значительное расстояние по кабелю. На практике иногда сложно провести четкую грань между описанными устройствами, так как многие производители выпускают многофункциональные устройства, которые включают терминальные модули, модули «ввода-вывода», а также модули кросс-коннекторов.
Стек протоколов состоит из протоколов 4-х уровней.
Физический уровень, названный в стандарте фотонным (photonic), имеет дело с кодированием бит информации с помощью модуляции света. Для кодирования сигнала применяется метод NRZ (благодаря внешней тактовой частоте его плохие самосинхронизирующие свойства недостатком не являются).
Уровень секции (section) поддерживает физическую целостность сети. Секцией в технологии называется каждый непрерывный отрезок волоконно-оптического кабеля, который соединяет пару устройств SONET/SDH между собой, например мультиплексор и регенератор. Протокол секции имеет дело с кадрами и на основе служебной информации кадра может проводить тестирование секции и поддерживать операции административного контроля. В заголовке протокола секции имеются байты, образующие звуковой канал 64 Кбит/с, а также канал передачи данных управления сетью со скоростью 192 Кбит/с. Заголовок секции всегда начинается с двух байт 11110110 00101000, которые являются флагами начала кадра. Следующий байт определяет уровень кадра: STS-1, STS-2 и т. д. За каждым типом кадра закреплен определенный идентификатор.
Уровень линии (line) отвечает за передачу данных между двумя мультиплексорами сети. Протокол этого уровня работает с кадрами разных уровней STS-n для выполнения различных операций мультиплексирования и демультиплексирования, а также вставки и удаления пользовательских данных. Таким образом, линией называется поток кадров одного уровня между двумя мультиплексорами. Протокол линии также ответственен за проведения операций реконфигурирования линии в случае отказа какого-либо ее элемента - оптического волокна, порта или соседнего мультиплексора.
Уровень тракта (path - путь) отвечает за доставку данных между двумя конечными пользователями сети. Тракт (путь) - это составное виртуальное соединение между пользователями. Протокол тракта должен принять данные, поступающие в пользовательском формате, например формате Т1, и преобразовать их в синхронные кадры STS-n/STM-m.
Как видно из рисунка 1.1, регенераторы работают только с протоколами двух нижних уровней, отвечая за качество сигнала и поддержания операций тестирования и управления сетью. Мультиплексоры работают с протоколами трех нижних уровней, выполняя, кроме функций регенерации сигнала и реконфигурации секций, функцию мультиплексирования кадров STS-n разных уровней. Кросс-коннектор представляет собой пример мультиплексора, который поддерживает протоколы трех уровней. И наконец, функции всех четырех уровней выполняют терминалы, а также мультиплексоры «ввода-вывода», то есть устройства, работающие с пользовательскими потоками данных.