
- •Е.А. Субботин, н.Ф. Лапина Мультисервисные сети
- •Содержание
- •6 Конвергенция 89
- •7 Проектирование участка магистрали dwdm 101
- •Введение
- •1 Технология синхронной цифровой иерархии sonet/sdh
- •1.1 Общие сведения
- •1.2 Стек протоколов
- •1.3 Формат кадра
- •1.4 Топология сети sdh
- •Топология "кольцо"
- •1.5 Архитектура сети sdh
- •1.6 Преимущества и недостатки
- •2 Технология атм
- •2.1 Основные принципы технологии атм
- •2.2 Стек протоколов атм
- •2.2.1 Уровень адаптации aal
- •2.2.2 Протокол атм
- •2.3 Передача трафика ip через сети атм
- •2.4 Преимущества и недостатки
- •3 Gigabit Ethernet
- •3.1 Общие сведения
- •3.2 Хронология разработки стандарта
- •3.3 Архитектура стандарта Gigabit Ethernet
- •3.4 Интерфейс 1000Base -X
- •3.5 Особенности использования многомодового волокна
- •3.6 Интерфейс 1000Base-t
- •3.7 Уровень mac
- •3.8 Использование технологии Ethernet для построения мультисервисных сетей
- •3.8.1 Качество обслуживания (Quality of Service, QoS)
- •3.8.2 Модель службы QoS
- •3.8.3 Технология DiffServ в сетях Ethernet
- •3.8.4 Технология Multi Protocol Label Switching
- •3.9 Технология 10 Gigabit Ethernet
- •3.9.1 Многомодовое волокно и 10-Gigabit Ethernet
- •3.9.2 Одномодовое волокно и 10-Gigabit Ethernet
- •3.9.3 Анализ конструкции волокна для сетей 10-Gigabit Ethernet
- •4 Технология Dense Wavelength-Division Multiplexing
- •4.1 Основные сведения
- •4.2 Мультиплексоры dwdm
- •4.3 Пространственное разделение каналов и стандартизация dwdm
- •4.4 Применение оптических усилителей efda
- •4.5 Классификация edfa по способам применения
- •4.6 Dwdm и мультисервисные сети
- •4.7 Взаимодействие с ip–сетями
- •4.8 Практическое применение технологии dwdm
- •4.9 Особенности и достоинства технологии dwdm
- •5 Технология Multi Protocol Label Switching
- •5.1 Общие сведения
- •5.2 Принцип коммутации
- •5.3 Элементы архитектуры
- •5.3.1 Метки и способы маркировки
- •5.3.2 Стек меток
- •5.3.3 Привязка и распределение меток
- •5.3.4 Построение коммутируемого маршрута
- •5.4 Mpls Traffic Engineering
- •5.5 Практическое применение mpls
- •5.6 Преимущества технологии mpls
- •5.7 Generalized Multiprotocol Lambda Switching
- •5.7.1 Наложенная и одноранговая модели
- •5.7.2 Преимущества технологии gmpls
- •5.7.3 Перспективы gmpls
- •6 Конвергенция
- •6.1 Сети конвергенции на основе atm или mpls
- •6.2 Качество обслуживания
- •6.3 Взаимодействие atm и ip/mpls
- •6.4 Е-mpls
- •7 Проектирование участка магистрали dwdm
- •7.1 Расчет капитальных вложений
- •7.2 Расчет затрат на эксплуатацию
- •7.3 Расчет доходов
- •7.4 Расчет налогов
- •Заключение
- •Литература
5.7.1 Наложенная и одноранговая модели
Оптическая сеть следующего поколения с динамическим выделением пропускной способности может быть построена одним из основных способов, как наложенная (overlay) или одноранговая (peer). Технология GMPLS использует оба способа. Наложенную и одноранговую модели можно рассматривать как два различных подхода к решению вопроса о том, какое именно сетевое оборудование отвечает за принятие решения о выделении пропускной способности и управлении ею.
Наложенная модель скрывает детали нижележащей магистральной сети за счет создания двух управляющих плоскостей, которые взаимодействуют достаточно слабо. Протоколы одной плоскости управляют ядром оптической сети, протоколы другой — окружающими ядро пограничными устройствами с помощью интерфейса «пользователь-сеть» (User-to-Network Interface, UNI). Пограничные устройства либо запрашивают световые пути с помощью динамической сигнализации через ядро, либо конфигурируются статически. Абстрагируясь от топологии ядра, наложенная модель может установить административные границы ответственности между ядром сети и остальной ее частью.
Данный подход, которому производители оптического сетевого оборудования обычно отдают предпочтение, требует полносвязных соединений «точка-точка» между пограничными устройствами, как для передачи данных, так и для объявлений протоколов маршрутизации. Это порождает интенсивный трафик служебных сообщений, что, в свою очередь, приводит к плохой масштабируемости наложенной модели и ограничивает количество применяемых пограничных устройств. Но на эту модель ориентируется широкий диапазон пограничных устройств, кроме того, большинство обозревателей соглашаются с тем, что наложенную модель легче реализовать, чем одноранговую.
Одноранговая модель использует единую плоскость управления, включающую домен администрирования, куда входят как ядро оптической сети, так и окружающие его пограничные устройства. В этом случае пограничные устройства видят топологию ядра. Модель более масштабируема, чем предыдущая, так как ячеистые соединения «точка-точка» между пограничными устройствами хотя и используются по-прежнему, но только для передачи пользовательских данных. Информация протоколов маршрутизации передается пограничным устройством только «материнскому» фотонному коммутатору, к которому это устройство присоединено, а не всем остальным пограничным устройствам. Так как большинство операторов хотели бы применять оба подхода в зависимости от ситуации, в частности от конкретной топологии сети и поддерживаемых сервисов, то, скорее всего, наиболее популярной будет гибридная модель.
Рисунок
5.7 - Общая схема сети GMPLS в соответствии
с:
а) наложенной;
б) одноранговой моделями — взгляд с сетевого уровня
В этом случае одни пограничные устройства смогут работать как равноправные партнеры с ядром сети, разделяя с ним общую плоскость управления. Одновременно, управление другими может осуществляться в соответствии с наложенной моделью со своей плоскостью управления, при этом они будут взаимодействовать с ядром с помощью интерфейса «пользователь-сеть». Необходимо отметить, что функциональность одноранговой модели включает функциональность наложенной модели, поэтому один набор протоколов плоскости управления может поддерживать обе модели. Таким образом, оператор может выбрать одноранговую модель и работать по любой схеме, в зависимости от требований бизнеса (см. Рисунок 5.7).