Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сети ЭВМ2 / Сети ЭВМ и Т2 / Мультисервисные сети.doc
Скачиваний:
148
Добавлен:
11.04.2015
Размер:
1.62 Mб
Скачать

3.9.1 Многомодовое волокно и 10-Gigabit Ethernet

Стандарт IEEE 802.3ae 10-Gigabit Ethernet включает в себя последовательный интерфейс 10GBASE-S (S – short, означает короткую длину волны), сконструированный для передачи по многомодовому волокну на длине волны 850 нм. Таблица 1 содержит длины волн, полосы пропускания и максимальное расстояние для разных типов многомодовых волокон на скорости 10 Гбит/с. Технические проблемы, связанные с использованием лазерных источников излучения совместно с многомодовыми волокнами (описанные в предыдущей части статьи), значительно ограничили рабочий диапазон "многомодового FDDI волокна" для технологии 10GbE. Такое волокно имеет полосу пропускания 160 МГц*км на длине волны 850 нм и 500 МГц*км на длине 1300 нм.

Таблица 3.3 Рабочий диапазон различного многомодового волокна в стандарте 10GBASE-S

Характеристика

Волокно 62,5 мкм

Волокно 50 мкм

Длина волны (нм)

850

850

850

850

850

Полоса пропускания, мин (МГц*км)

160

200

400

500

2000

Расстояние (м)

2-26

2-33

2-66

2-82

2-300

Для того чтобы достичь с помощью многомодового волокна расстояний до 300 м (как описано в стандартах на укладку кабеля TIA/EIA-568 и ISO/IEC 11801), пришлось создать новую спецификацию волокна для стандарта 10GbE. Это новое волокно иногда называется “многомодовое 10 Gigabit Ethernet волокно” и является 850 нм, 50/125 мкм волокном, специально приспособленным для использования с лазером, имеющим эффективную полосу пропускания 2000 МГц*км. Это волокно подробно описано в стандарте TIA-492AAAC. Его ключевое отличие от традиционных многомодовых волокон – дополнительные требования к DMD, обусловленные новым стандартом измерения DMD (TIA FOTP-220) и описанные в стандарте TIA-492AAAC. Как показано в таблице 1, сегмент с использованием этого волокна может достигать длины 300 м с интерфейсом 10GBASE-S. Большое количество ведущих производителей активно продвигают на рынок это новое многомодовое волокно для применения в решениях 10GbE.

Существуют два основных фактора, которые, вероятно, будут способствовать использованию нового “10-Gigabit Ethernet волокна”: популярность небольших (300 м или меньше) решений 10GbE и низкая стоимость интерфейсов 10GBASE-S по отношению к другим интерфейсам. Доказательство популярности недорогих, небольших 850 нм решений Ethernet легко видеть, глядя на количество проданных адаптеров типа 1000BASE-SX для Gigabit Ethernet. 1000BASE-SX работает на одномодовом волокне на расстояниях до 550 м и составляет большой процент от общего количества проданных GbE адаптеров.

Альтернативным решением является использование одномодового волокна с интерфейсами 10GBASE-L, 10GBASE-E или 10GBASE-LX4, последний из которых поддерживает как одномодовое, так и многомодовое волокно на расстояниях до 10 км и до 300 м соответственно.

3.9.2 Одномодовое волокно и 10-Gigabit Ethernet

Стандартное одномодовое волокно может использоваться практически в любых решениях. При небольшом числе длин волн, малых скоростях и дальностях передачи возможен выбор между одномодовым и многомодовым волокном, в зависимости от уровня сложности и стоимости, которые оператор желает получить. С увеличением числа длин волн, ростом скорости и дальности передачи одномодовое волокно становится единственным допустимым вариантом.

Затухание

Для коротких участков волокна передача на длине волны 1310 нм остается привлекательной благодаря цене и доступности соответствующих лазеров. Несколько факторов, однако, побуждают к использованию передачи на больших длинах волн. На высоких скоростях передачи данных требования к чувствительности приемника обычно являются более строгими, что делает необходимым получение большей оптической энергии для поддержания низкой частоты ошибок. Из-за относительно высокого затухания на длине волны 1310 нм (см. таблицу 3) максимально возможные расстояния меньше по сравнению с 1550 нм. На больших расстояниях, которые превосходят допустимые пределы по чувствительности оптических приемников, сигналы в диапазоне 1550 нм могут быть усилены оптическим способом (обычно с использованием усилителей EDFA), что является невозможным на 1310 нм. В результате, передача на 1310 нм требует электрической регенерации, которая намного дороже, чем оптическое усиление.

Таблица 3.4 Затухание в стандартном одномодовом волокне в диапазонах 1310 и 1550 нм

Длина волны, нм

Максимальное затухание в волокне по стандарту IEC 60793-2, дБ/км

Обычное затухание в кабеле, дБ/км

1310

0,4

0,35

1550

0,3

0,25

Хроматическая дисперсия

Оптические импульсы, несущие цифровые данные, содержат в себе ограниченный спектр волн (а не только одну узкую длину волны). Так как различные длины волн распространяются в волокне с различной скоростью, отдельные компоненты импульса разделяются по мере его распространения по волокну. В конце концов, соседние оптические импульсы начинают перекрываться друг с другом и сигнал существенно искажается.

На 1310 нм затухание разрушает оптический сигнал, передаваемый по стандартному одномодовому волокну, еще до того, как хроматическая дисперсия становится проблемой. В результате, хроматическая дисперсия не является недостатком для передачи со скоростью 10 Гб/с в диапазоне 1310 нм по стандартному одномодовому волокну. Однако в диапазоне 1550 нм увеличенная хроматическая дисперсия в стандартном одномодовом волокне становится значительным сдерживающим фактором, обычно ограничивающим передачу 10 Gigabit Ethernet расстоянием в 40 км (хотя это зависит также от выбора передатчика).

На расстояниях, превышающих дисперсионные пороговые значения для стандартного одномодового волокна, требуется либо электрическая регенерация сигнала, либо оптическая компенсация дисперсии. Волокна DSF и NZDSF уменьшают хроматическую дисперсию в области 1550 нм, таким образом, увеличивается расстояние, на котором не требуется электрическая регенерация или оптическая компенсация дисперсии.

Поляризационная модовая дисперсия

Постоянно упоминаемым потенциальным препятствием для использования решений 10 Гб/с является поляризационная модовая дисперсия (PMD), вносимая некоторыми волоконными инфраструктурами. Фактически PMD разделяет оптический сигнал на два идентичных сигнала, которые распространяются по волокну с различными скоростями. Если две компоненты значительно разделены в момент получения сигнала, передаваемая информация может оказаться значительно повреждена.

Большинство оптических волокон, соответствующих современным стандартам G.652 (стандартное одномодовое волокно) и G.655 (волокно с ненулевой смещенной дисперсией), подходят для передачи со скоростью 10 Гб/с в глобальных сетевых решениях. Однако у старых инфраструктур, особенно у тех, которые были созданы до 1990-х годов, существуют потенциальные недостатки. Недостаток требований к PMD в промышленных стандартах в то время сделал возможным большой разброс в характеристиках волокон в зависимости от производителей и использованных технологий. Хотя стандартизация PMD во многом решила проблему, значительное количество волокна, введенного в эксплуатацию до начала 1990-х, представляет собой потенциальную проблему для применения технологии передачи на скорости 10 Гб/с. Ситуация достаточно значительна и является для нескольких ведущих операторов основанием для того, чтобы требовать тестирования PMD в любой сети, рассматриваемой с точки зрения возможной работы на скорости 10Гб/с. PMD остается в фокусе внимания при разработке волокна под высокие скорости передачи (40 Гб/с и выше).

Соседние файлы в папке Сети ЭВМ и Т2