
- •Е.А. Субботин, н.Ф. Лапина Мультисервисные сети
- •Содержание
- •6 Конвергенция 89
- •7 Проектирование участка магистрали dwdm 101
- •Введение
- •1 Технология синхронной цифровой иерархии sonet/sdh
- •1.1 Общие сведения
- •1.2 Стек протоколов
- •1.3 Формат кадра
- •1.4 Топология сети sdh
- •Топология "кольцо"
- •1.5 Архитектура сети sdh
- •1.6 Преимущества и недостатки
- •2 Технология атм
- •2.1 Основные принципы технологии атм
- •2.2 Стек протоколов атм
- •2.2.1 Уровень адаптации aal
- •2.2.2 Протокол атм
- •2.3 Передача трафика ip через сети атм
- •2.4 Преимущества и недостатки
- •3 Gigabit Ethernet
- •3.1 Общие сведения
- •3.2 Хронология разработки стандарта
- •3.3 Архитектура стандарта Gigabit Ethernet
- •3.4 Интерфейс 1000Base -X
- •3.5 Особенности использования многомодового волокна
- •3.6 Интерфейс 1000Base-t
- •3.7 Уровень mac
- •3.8 Использование технологии Ethernet для построения мультисервисных сетей
- •3.8.1 Качество обслуживания (Quality of Service, QoS)
- •3.8.2 Модель службы QoS
- •3.8.3 Технология DiffServ в сетях Ethernet
- •3.8.4 Технология Multi Protocol Label Switching
- •3.9 Технология 10 Gigabit Ethernet
- •3.9.1 Многомодовое волокно и 10-Gigabit Ethernet
- •3.9.2 Одномодовое волокно и 10-Gigabit Ethernet
- •3.9.3 Анализ конструкции волокна для сетей 10-Gigabit Ethernet
- •4 Технология Dense Wavelength-Division Multiplexing
- •4.1 Основные сведения
- •4.2 Мультиплексоры dwdm
- •4.3 Пространственное разделение каналов и стандартизация dwdm
- •4.4 Применение оптических усилителей efda
- •4.5 Классификация edfa по способам применения
- •4.6 Dwdm и мультисервисные сети
- •4.7 Взаимодействие с ip–сетями
- •4.8 Практическое применение технологии dwdm
- •4.9 Особенности и достоинства технологии dwdm
- •5 Технология Multi Protocol Label Switching
- •5.1 Общие сведения
- •5.2 Принцип коммутации
- •5.3 Элементы архитектуры
- •5.3.1 Метки и способы маркировки
- •5.3.2 Стек меток
- •5.3.3 Привязка и распределение меток
- •5.3.4 Построение коммутируемого маршрута
- •5.4 Mpls Traffic Engineering
- •5.5 Практическое применение mpls
- •5.6 Преимущества технологии mpls
- •5.7 Generalized Multiprotocol Lambda Switching
- •5.7.1 Наложенная и одноранговая модели
- •5.7.2 Преимущества технологии gmpls
- •5.7.3 Перспективы gmpls
- •6 Конвергенция
- •6.1 Сети конвергенции на основе atm или mpls
- •6.2 Качество обслуживания
- •6.3 Взаимодействие atm и ip/mpls
- •6.4 Е-mpls
- •7 Проектирование участка магистрали dwdm
- •7.1 Расчет капитальных вложений
- •7.2 Расчет затрат на эксплуатацию
- •7.3 Расчет доходов
- •7.4 Расчет налогов
- •Заключение
- •Литература
3.8.4 Технология Multi Protocol Label Switching
Традиционными требованиями, предъявляемыми к технологии современной магистральной сети, были высокая пропускная способность, высокая скорость передачи, хорошая масштабируемость, надежность и др. Однако современное состояние рынка телекоммуникаций выдвигает дополнительные требования. Теперь провайдеру услуг недостаточно просто предоставить доступ к своей магистрали - пользователи хотят иметь возможность организации виртуальных частных сетей (VPN) и доступа к различным интегрированным сервисам сети. Для решения этих задач и решения проблемы обеспечения "сквозного" качества обслуживания была разработана технология MPLS.
MPLS (Multi Protocol Label Switching) — это технология быстрой коммутации пакетов в многопротокольных сетях, основанная на использовании меток. MPLS сочетает в себе возможности управления трафиком, присущие технологиям канального уровня (Data Link Layer 2), и масштабируемость и гибкость протоколов, характерные для сетевого уровня (Network Link Layer 3). "Многопротокольность" в название технологии означает, что MPLS – инкапсулирующий протокол и может транспортировать множество других протоколов, рис. 3.11.
Рисунок 3.11 - Технология MPLS в IP сетях и модель OSI/ISO
Технологии MPLS и DiffServ схожи – оба стандарта используют маркировку пакетов во входных точках сети, то есть анализ, классификация трафика происходит на границе доменов. Однако, в отличие от DiffServ, использующего для DSCP уже существующее поле TOS в пакете IP, в MPLS к пакету добавляется специальная 32-разрядная информационная метка, рис. 3.12. Метка помещается между заголовками второго/ третьего уровня и используется для определения следующего маршрутизатора на пути к пункту назначения. Кодовое же слово DSCP в механизме DiffServ не несет себе информацию, которая влияет на выбор маршрута для продвижения пакетов, а определяет уровень качества обслуживания пакетов в промежуточных узлах.
Рисунок 3.12 - Формат метки MPLS
Протокол MPLS упрощает процесс продвижения пакетов в магистрали, поскольку на промежуточных LSR происходит не обычная маршрутизация, а высокоскоростная коммутация на основании информации в метке. Распространение трафика в сети MPLS происходит по следующему сценарию. Первый пограничный коммутатор LER на основании IP адреса пункта назначения и/или другой информации заголовка пакета определяет соответствующее политике обеспечения QoS значение метки, принадлежность пакета определенному классу FEC и выходной интерфейс для пакета. Следующий маршрутизатор LSR использует метку для про-движения пакета, сопоставляя с находящейся на нем базой информации о метках (Label Infor-mation Base — LIB), определяет следующий LSR на пути к пункту назначения и заменят метку на новую. Последний пограничный маршрутизатор снимает метку и отправляет на выходной интерфейс в обычном виде, рис. 3.13.
Рисунок 3.13 - Пример гибридной магистрали DiffServ+MPLS
3.9 Технология 10 Gigabit Ethernet
По мере того, как технология 10 Gigabit Ethernet (10GbE) начинает использоваться в оптических магистральных сетях передачи данных, физические ограничения оптического волокна ставят новые задачи перед разработчиками сетей. Межмодовая, хроматическая и поляризационная модовая дисперсия и другие нелинейные эффекты становятся главными факторами, ограничивающими длину канала связи 10GbE.
Как и для предыдущих поколений Ethernet, при проектировании сети 10 Gigabit Ethernet требуется четкое понимание возможностей волоконной инфраструктуры.