
- •Е.А. Субботин, н.Ф. Лапина Мультисервисные сети
- •Содержание
- •6 Конвергенция 89
- •7 Проектирование участка магистрали dwdm 101
- •Введение
- •1 Технология синхронной цифровой иерархии sonet/sdh
- •1.1 Общие сведения
- •1.2 Стек протоколов
- •1.3 Формат кадра
- •1.4 Топология сети sdh
- •Топология "кольцо"
- •1.5 Архитектура сети sdh
- •1.6 Преимущества и недостатки
- •2 Технология атм
- •2.1 Основные принципы технологии атм
- •2.2 Стек протоколов атм
- •2.2.1 Уровень адаптации aal
- •2.2.2 Протокол атм
- •2.3 Передача трафика ip через сети атм
- •2.4 Преимущества и недостатки
- •3 Gigabit Ethernet
- •3.1 Общие сведения
- •3.2 Хронология разработки стандарта
- •3.3 Архитектура стандарта Gigabit Ethernet
- •3.4 Интерфейс 1000Base -X
- •3.5 Особенности использования многомодового волокна
- •3.6 Интерфейс 1000Base-t
- •3.7 Уровень mac
- •3.8 Использование технологии Ethernet для построения мультисервисных сетей
- •3.8.1 Качество обслуживания (Quality of Service, QoS)
- •3.8.2 Модель службы QoS
- •3.8.3 Технология DiffServ в сетях Ethernet
- •3.8.4 Технология Multi Protocol Label Switching
- •3.9 Технология 10 Gigabit Ethernet
- •3.9.1 Многомодовое волокно и 10-Gigabit Ethernet
- •3.9.2 Одномодовое волокно и 10-Gigabit Ethernet
- •3.9.3 Анализ конструкции волокна для сетей 10-Gigabit Ethernet
- •4 Технология Dense Wavelength-Division Multiplexing
- •4.1 Основные сведения
- •4.2 Мультиплексоры dwdm
- •4.3 Пространственное разделение каналов и стандартизация dwdm
- •4.4 Применение оптических усилителей efda
- •4.5 Классификация edfa по способам применения
- •4.6 Dwdm и мультисервисные сети
- •4.7 Взаимодействие с ip–сетями
- •4.8 Практическое применение технологии dwdm
- •4.9 Особенности и достоинства технологии dwdm
- •5 Технология Multi Protocol Label Switching
- •5.1 Общие сведения
- •5.2 Принцип коммутации
- •5.3 Элементы архитектуры
- •5.3.1 Метки и способы маркировки
- •5.3.2 Стек меток
- •5.3.3 Привязка и распределение меток
- •5.3.4 Построение коммутируемого маршрута
- •5.4 Mpls Traffic Engineering
- •5.5 Практическое применение mpls
- •5.6 Преимущества технологии mpls
- •5.7 Generalized Multiprotocol Lambda Switching
- •5.7.1 Наложенная и одноранговая модели
- •5.7.2 Преимущества технологии gmpls
- •5.7.3 Перспективы gmpls
- •6 Конвергенция
- •6.1 Сети конвергенции на основе atm или mpls
- •6.2 Качество обслуживания
- •6.3 Взаимодействие atm и ip/mpls
- •6.4 Е-mpls
- •7 Проектирование участка магистрали dwdm
- •7.1 Расчет капитальных вложений
- •7.2 Расчет затрат на эксплуатацию
- •7.3 Расчет доходов
- •7.4 Расчет налогов
- •Заключение
- •Литература
2.4 Преимущества и недостатки
Основные преимущества технологии ATM:
динамическое управление полосой пропускания каналов связи;
предоставление QoS для различных типов трафика;
возможности резервирования каналов связи и оборудования;
возможность интегрирования самых различных типов трафика, включая голос, данные, видео;
возможность экономии полосы пропускания за счет специальных технологий обработки голосового трафика;
возможность эмуляции «прозрачных» каналов связи;
совместимость с технологией FR и предоставление сервисов пользователям FR.
используя технологию MPLS (Tag Switching), сервис-провайдер, имеющий опорную сеть АТМ, может динамически коммутировать трафик IP по опорной сети АТМ в реальном масштабе времени. При этом появляется возможность предоставлять необходимый QoS, соотнося уровни приоритезации IP И ATM.
Недостатки технологии ATM:
сложность технологии;
относительно высокие цены оборудования;
недостаточная совместимость оборудования от различных производителей;
в специфических задачах (например, при частой передаче небольших объемов трафика) применение технологии АТМ может привести к неоправданно большим задержкам при установлении соединений и к довольно высокому проценту служебной информации, загружающей канал связи.
Использование технологии ATM при построении опорной сети можно рекомендовать в следующих случаях:
загрузка каналов близка к предельной;
требуется передавать разнородный трафик с предоставлением различных классов обслуживания (голос, данные, видео);
доля голосового трафика в общей загрузке канала является существенной;
возможны требования по предоставлению «прозрачных» каналов связи, например для соединения выносов АТС.
3 Gigabit Ethernet
3.1 Общие сведения
Технология Gigabit Ethernet благодаря высокой скорости передачи данных и низкой стоимости, получила широкое распространение как магистральная технология передачи данных. Основные характеристики современного оборудования Gigabit Ethernet:
наличие «дальнобойных» оптических интерфейсов;
полная совместимость с существующими сетями Ethernet;
масштабируемость, обеспечение плавного развития сетей, создание транковых магистральных соединений;
высочайшая скорость (уже вышел стандарт 10 Gigabit Ethernet);
высокая надежность сети, обеспечиваемая резервными и транковыми соединениями;
простота и высокая эффективность, в силу отсутствия избыточности и сложности, при передаче трафика Ethernet;
поддержка новейших разработок в области обеспечения QoS/CoS таких как DiffServ и MPLS.
Развитие стандартов сетей Ethernet, снятие ограничений на расстояния, связанных с диаметром коллизионного домена, появление полнодуплексного коммутируемого Ethernet и приоритезации трафика сделали возможным и нередко экономически целесообразным применение данной технологии при построении сетей уровня MAN.
3.2 Хронология разработки стандарта
В марте 1996 года комитет IEEE 802.3 одобряет проект стандартизации Gigabit Ethernet 802.3z. В мае 1996 года 11 компаний (3Com Corp., Bay Networks Inc., Cisco Systems Inc., Compaq Computer Corp., Granite Systems Inc., Intel Corporation, LSI Logic, Packet Engines Inc., Sun Microsystems Computer Company, UB Networks и VLSI Technology) организовывают Gigabit Ethernet Alliance.
Альянс, объединяя усилия большого числа ведущих производителей сетевого оборудования на пути выработки единого стандарта и выпуска взаимосовместимых продуктов Gigabit Ethernet, преследует следующие цели:
поддержка расширения технологий Ethernet и Fast Ethernet в ответ на потребность в более высокой скорости передачи;
разработка технических предложений с целью включения в стандарт;
выработка процедур и методов тестирования продуктов от различных поставщиков.
К началу 1998 года Альянс насчитывает уже более 100 компаний. Через Альянс обеспечивается обратная связь между техническим комитетом по стандартизации IEEE 802.3 и индустриальными производителями сетевого оборудования. Альянс увеличивает эффективность работы комитета и способствует более быстрому одобрению спецификаций стандартов Gigabit Ethernet IEEE 802.3z и IEEE 802.3ab. Наибольшие трудности вызывает физический уровень, а именно адаптация многомодового волокна и витой пары.
29 июня 1998 г. с задержкой примерно в на полгода от первоначально запланированного графика, вызванной доработкой стандарта по отношению к использованию многомодового волокна (аномалия, получившая название DMD), принимается стандарт IEEE 802.3z (был одобрен в качестве стандарта пятый драфт 802.3z/D5). Соответствующие спецификации регламентруют использование одномодового, многомодового волокна, а также витой пары UTP cat.5 на короткие расстояния (до 25 м).
Стандартизация системы передачи Gigabit Ethernet по неэкранированной витой паре на расстояния до 100 м требовала разработки специального помехоустойчивого кода, для чего создается отдельный подкомитет P802.3ab. 28 июня 1999 г. принимается соответсвующий стандарт (единогласно одобряется шестой драфт 802.3ab/D6).