Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BEZ_2012 / IPSec / IPSec.doc
Скачиваний:
112
Добавлен:
11.04.2015
Размер:
218.62 Кб
Скачать

Как работает ipSec

IPSec опирается на ряд технологических решений и методов шифрования, но действие IPSec в общем можно представить в виде следующих главных шагов:

  • Шаг 1. Начало процесса IPSec. Трафик, которому требуется шифрование в соответствии с политикой защиты IPSec, согласованной сторонами IPSec, начинает IКЕ-процесс.

  • Шаг 2. Первая фаза IKE. IKE-процесс выполняет аутентификацию сторон IPSec и ведет переговоры о параметрах ассоциаций защиты IKE, в результате чего создается защищенный канал для ведения переговоров о параметрах ассоциаций защиты IPSec в ходе второй фазы IKE.

  • Шаг 3. Вторая фаза IKE. IKE-процесс ведет переговоры о параметрах ассоциации защиты IPSec и устанавливает соответствующие ассоциации защиты IPSec для устройств сообщающихся сторон.

  • Шаг 4. Передача данных. Происходит обмен данными между сообщающимися сторонами IPSec, который основывается на параметрах IPSec и ключах, хранимых в базе данных ассоциаций защиты.

  • Шаг 5. Завершение работы туннеля IPSec. Ассоциации защиты IPSec завершают свою работу либо в результате их удаления, либо по причине превышения предельного времени их существования.

Режимы работы ipSec

Существует два режима работы IPSec: транспортный и туннельный.

В транспортном режиме шифруется только информативная часть IP-пакета. Маршрутизация не затрагивается, так как заголовок IP-пакета не изменяется. Транспортный режим, как правило, используется для установления соединения между хостами.

В туннельном режиме IP-пакет шифруется целиком. Для того, чтобы его можно было передать по сети, он помещается в другой IP-пакет. Таким образом, получается защищенный IP-туннель. Туннельный режим может использоваться для подключения удаленных компьютеров к виртуальной частной сети или для организации безопасной передачи данных через открытые каналы связи (Internet) между шлюзами для объединения разных частей виртуальной частной сети.

Согласование преобразований IPSec

В ходе работы протокола IKE ведутся переговоры о преобразованиях IPSec (алгоритмах защиты IPSec). Преобразования IPSec и связанные с ними алгоритмы шифрования являются следующими:

  • Протокол АН (Authentication Header - заголовок аутентификации). Протокол зашиты, обеспечивающий аутентификацию и (в качестве опции) сервис выявления воспроизведения. Протокол АН действует как цифровая подпись и гарантирует, что данные в пакете IP не будут несанкционированно изменены. Протокол АН не обеспечивает сервис шифрования и дешифрования данных. Данный протокол может использоваться или самостоятельно, или совместно с протоколом ESP.

  • Протокол ESP (Encapsulating Security Payload -- включающий защиту полезный груз). Протокол защиты, обеспечивающий конфиденциальность и защиту данных, а также (в качестве опции) сервис аутентификации и выявления воспроизведения. Поддерживающие IPSec продукты Cisco используют ESP для шифрования полезного груза IP-пакетов. Протокол ESP может использоваться самостоятельно или совместно с АН.

  • Стандарт DES (Data Encription Standard -- стандарт шифрования данных). Алгоритм шифрования и дешифрования данных пакетов. Алгоритм DES используется как в рамках IPSec, так и IKE. Для алгоритма DES используется 56-битовый ключ, что означает не только более высокое потребление вычислительных ресурсов, но и более надежное шифрование. Алгоритм DES является симметричным алгоритмом шифрования, для которого требуются идентичные секретные ключи шифрования в устройствах каждой из сообщающихся сторон IPSec. Для создания симметричных ключей применяется алгоритм Диффи-Хеллмана. IKE и IPSec используют алгоритм DES для шифрования сообщений.

  • "Тройной" DES (3DES). Вариант DES, основанный на использовании трех итераций стандартного DES с тремя разными ключами, что практически утраивает стойкость DES. Алгоритм 3DES используется в рамках IPSec для шифрования и дешифрования потока данных. Данный алгоритм использует 168-битовый ключ, что гарантирует высокую надежность шифрования. IKE и IPSec используют алгоритм 3DES для шифрования сообщений.

  • AES (advanced encryption standard). Протокол AES использует алгоритм шифрования Rine Dale4, который обеспечивает существенно более надежное шифрование. Многие криптографы считают, что AES вообще невозможно взломать. Сейчас AES яв­ляется федеральным стандартом обработки информации. Он определен как алгоритм шифрования для использования правительственными организациями США для защи­ты важных, но несекретных сведений. Проблема, связанная с AES, состоит в том, что для его реализации требуется большая вычислительная мощность по сравнению с аналогичными протоколами.

При преобразовании IPSec используется также два стандартных алгоритма хэширования, обеспечивающих аутентификацию данных.

  • Алгоритм MD5 (Message Digest 5). Алгоритм хэширования, применяемый для аутентификации пакетов данных. В продуктах Cisco используется вычисляемый с помощью MD5 код НМАС (Hashed Message Authentication Code -- хэшированный код аутентичности сообщения)- вариант кода аутентичности сообщения, которому обеспечивается дополнительная защита с помощью хэширования. Хэширование представляет собой процесс одностороннего (т.е. необратимого) шифрования, в результате которого для поступающего на вход сообщения произвольной длины получается вывод фиксированной длины. IKE, АН и ESP используют MD5 для аутентификации данных.

  • Алгоритм SHA-1 (Secure Hash Algorithm-1 -- защищенный алгоритм хэширования 1). Алгоритм хэширования, используемый для аутентификации пакетов данных. В продуктах Cisco применяется вариант кода НМАС, вычисляемый с помощью SHA-1. IKЕ, АН и ESP используют SHA-1 для аутентификации данных.

В рамках протокола IKE симметричные ключи создаются с помощью алгоритма Диффи-Хеллмана, использующего DES, 3DES, MD5 и SHA. Протокол Диффи-Хеллмана является криптографическим протоколом, основанным на применении открытых ключей. Он позволяет двум сторонам согласовать общий секретный ключ, не имея достаточно надежного канала связи. Общие секретные ключи требуются для алгоритмов DES и НМАС. Алгоритм Диффи-Хеллмана используется в рамках IKE для создания сеансовых ключей. Группы Diffie-Hellman (DH) – определяют «силу» ключа шифрования, который используется в процедуре обмена ключами. Чем выше номер группы, тем «сильнее» и безопаснее ключ. Однако следует учитывать тот факт, что при увеличении номер группы DH увеличивается «сила» и уровень безопасности ключа, однако одновременно увеличивается нагрузка на центральный процессор, так как для генерации более «сильного» ключа необходимо больше времени и ресурсов.

Устройства WatchGuard поддерживают DH группы 1, 2 и 5:

  • DH group 1: 768-bit key

  • DH group 2: 1024-bit key

  • DH group 5: 1536-bit key

Оба устройства, которые обмениваются данными через VPN должны использовать одну и ту же группу DH. Группа DH, которая будет использоваться устройствами, выбирается во время IPSec Phase 1 процедуры.