
- •Моделирование и проектирование в инфокоммуникационных технологиях
- •Оглавление
- •Глава 1. Основные понятия, определения, классификация 9
- •Глава 2. Классификация методов моделирования 37
- •Глава 7. Программирование в среде «mathcad» 159
- •Глава 8. Оценка искажений сигналов при прохождении через нелинейные устройства 178
- •Глава 9. Цифровая фильтрация 186
- •Глава 10. Синтез линейных антенных систем 286
- •Глава 11. О моделировании канала связи 314
- •Введение
- •Глава 1. Основные понятия, определения, классификация
- •1.1 Понятия системы, модели и моделирования
- •1.2 Классификация радиотехнических устройств
- •Отличительные признаки устройств согласно данной классификации
- •Устройства пассивного и активного типа
- •Устройства автономного и неавтономного типа
- •Устройство с элементами сосредоточенного и распределенного типа
- •1.3 Основные типы задач в радиотехнике
- •1.4 Развитие понятия модели
- •1.4.1 Модель как философская категория
- •1.4.2 Моделирование – важнейший этап целенаправленной деятельности
- •1.4.3 Познавательные и прагматические модели
- •1.4.4 Статические и динамические модели
- •1.5 Способы воплощения моделей
- •1.5.1 Абстрактные модели и роль языков
- •1.5.2 Материальные модели и виды подобия
- •1.5.3 Условия реализации свойств моделей
- •1.6 Соответствие между моделью и действительностью в аспекте различия
- •1.6.1 Конечность моделей
- •1.6.2 Упрощенность моделей
- •1.6.3 Приближенность моделей
- •1.6.4 Адекватность моделей
- •1.7 Соответствие между моделью и действительностью в аспекте сходство
- •1.7.1 Истинность моделей
- •1.7.2 О сочетании истинного и ложного в модели
- •1.7.3 Сложности алгоритмизации моделирования
- •1.8 Основные типы моделей
- •1.8.1 Понятие проблемной ситуации при создании системы
- •1.8.2 Основные типы формальных моделей
- •1.8.3 Математическое представление модели «черного ящика»
- •1.9 Взаимосвязи моделирования и проектирования
- •1.10 Точность моделирования
- •Глава 2. Классификация методов моделирования
- •2.1 Реальное моделирование
- •2.2 Мысленное моделирование
- •Глава 3. Математическое моделирование
- •3.1 Этапы создания математических моделей
- •З.2 Компонентные и топологические уравнения моделируемого объекта
- •3.3 Компонентные и топологические уравнения электрической цепи
- •Глава 4. Особенности компьютерных моделей
- •4.1 Компьютерное моделирование и вычислительный эксперимент
- •4.2 Программные средства компьютерного моделирования
- •Глава 5. Особенности радиосистемы как объекта изучения методами моделирования на эвм
- •5.1 Классы радиосистем
- •5.2 Формальное описание радиосистем
- •Глава 6. Применение пакета прикладных программmathcadдля моделирования телекоммуникационных устройств
- •6.1 Основные сведения об универсальном математическом пакете программMathCad
- •6.2 Основы языкаMathCad
- •3.246Е – 3 – это число 0.003246;
- •6.2.1 Тип входного языкаMathCad
- •6.2.2 Описание текстового окнаMathCad
- •6.2.3 Курсор ввода
- •6.2.4 Содержание командных меню (2-ая строка)
- •6.2.5 Управление элементами интерфейса
- •6.2.6 Выделение областей
- •6.2.7 Изменение масштаба документа
- •6.2.8 Обновление экрана
- •6.2.9 Содержание инструментальных панелей подменю «математика»
- •6.3 Основные правила работы в среде «MathCad»
- •6.3.1 Удаление математических выражений
- •6.3.2 Копирование математических выражений
- •6.3.3 Перенос математических выражений
- •6.3.4 Вписывание в программу текстовых комментариев
- •6.4 Построение графиков
- •6.4.1 Построение графиков в декартовой системе координат
- •6.4.2 Построение графиков в полярной системе координат
- •6.4.3 Изменение формата графиков
- •6.4.4 Правила трассировки графиков
- •6.4.5 Правила просмотра участков двумерных графиков
- •6.5 Правила вычислений в среде «MathCad»
- •6.6 Анализ линейных устройств
- •6.6.1 Передаточная функция, коэффициент передачи, временные и частотные характеристики
- •6.6.2 Коэффициент передачиK(jω)
- •6.6.3 Амплитудно-частотная характеристика (ачх)
- •6.6.4 Определение переходной и импульсной характеристик
- •6.7 Методы решения в среде «MathCad» алгебраических и трансцендентных уравнений и организация вычислений по циклу
- •6.7.1 Определение корней алгеброических уравнений
- •6.7.2 Определение корней трансцендентных уравнений
- •6.7.3 Вычисления по циклу
- •6.8 Обработка данных
- •6.8.1 Кусочно-линейная интерполяция
- •6.8.2 Сплайн-интерполяция
- •6.8.3 Экстраполяция
- •6.9 Символьные вычисления
- •6.10 Оптимизация в расчетах рэа
- •6.10.1 Стратегии одномерной оптимизации
- •6.10.2 Локальные и глобальные экстремумы
- •6.10.3 Методы включения интервалов неопределенности
- •6.10.4 Критерии оптимизации
- •6.10.5 Методы поиска экстремума функции цели
- •6.10.6 Пример записи целевой функции при синтезе фильтров
- •6.11 Анимация графического материала в средеMathCad
- •6.11.1 Подготовка к анимации
- •6.11.2 Пример анимации графика
- •6.11.3 Вызов проигрывателя анимации графиков и видео файлов
- •6.12 Установка связиMathCaDс другими программными средами
- •Глава 7. Программирование в среде «mathcad»
- •7.1 Обзор инструкций
- •7.1.1 Инструкция Add line
- •7.1.2 Оператор внутреннего присваивания
- •7.1.3 Условная инструкция «if»
- •7.2.1 Особенность присвоения значения функции
- •7.2.2 Общие принципы задания операторов
- •7.3 Примеры составления программ
- •7.3.1 Пример задания комплекса условий
- •7.3.2 Пример расчета с заданной точностью
- •7.3.3 Пример расчета различных параметров одной и той же программой
- •7.4 Создание новых функций с помощью программирования
- •7.5 Поиск ошибок в программах
- •Глава 8. Оценка искажений сигналов при прохождении через нелинейные устройства
- •8.1 Оценка нелинейных искажений при компресии и ограничении аудиосигналов на входе цифровых трактов
- •Глава 9. Цифровая фильтрация
- •9.1 Рекурсивные цифровые фильтры
- •9.2 Формы реализации рекурсивных фильтров
- •9.3 Методика синтеза рф по аналоговому прототипу
- •9.3.1 Синтез аналогового фильтра прототипа
- •9.3.2 Расчет числа звеньев и определение полюсов и нулей низкочастотного фильтра прототипа
- •9.3.3 Переход от аналогового фильтра прототипа к цифровому фильтру
- •9.3.4 Порядок и пример синтеза цифрового рекурсивного фильтра
- •9.4 Синтез нерекурсивных фильтров
- •9.4.1 Синтез нерекурсивных фильтров методом весовых функций
- •9.4.2 Основные параметры весовых функций
- •9.4.3 Импульсные характеристики идеальных цф различного типа
- •9.4.4 Методика синтеза нф методом весовых функций и пример синтеза полосового цифрового фильтра
- •9.5 Синтез нерекурсивного фильтра методом частотной выборки
- •9.5.1 Методика синтеза нф методом частотной выборки
- •9.6 АктивныйRc-фильтры
- •9.7 Передаточные функции фильтров
- •9.8 Преобразование частот
- •9.9 Реализация звеньев первого порядка
- •9.10 Реализация звеньев второго порядка
- •Глава 10. Синтез линейных антенных систем
- •10.1 Общая постановка задачи
- •10.2 Характеристика направленности как целевая функция
- •10.3 Синтез линейного излучателя методом парциальных диаграмм направленности
- •10.4 Синтез излучателей методом интеграла Фурье
- •10.5 Описание программ синтеза линейного излучателя в средеMathcad
- •Определяем число отсчетов (выборок по u)! и определяем значение парциалов (коэффициентов Котельникова) в этих точках! Построение фукция распределения возбуждения рядом Фурье!
- •Программа расчета х.Н. Линейного излучателя методом Фурье! Определяем расчетную частоту и размеры антенны! Формируем дн антенны!
- •10.6 Синфазные антенные решетки с оптимальной диаграммой направленности
- •10.7 Расчет амплитудного распределения возбуждения в линейных антенных решетках
- •10.8 Программа синтез антенной решетки по заданному уровню боковых лепестков
- •Расчет дн антенны по найденному распределению питающих токов.
- •11.2 Определение погрешностей моделирования (оценки средней вероятности ошибки) методом малых отклонений
- •11.3 Погрешности моделирования канала при исследованиях двоичных систем связи
- •11.3.1 Когерентный прием при моделировании релеевских замираний
- •11.3.2 Прием сигналов относительной фазовой телеграфии при моделировании релеевских замираний
- •Литература
1.5.2 Материальные модели и виды подобия
Чтобы некоторая материальная конструкция могла быть отображением, т.е. замещала в каком-то отношении оригинал, между оригиналом и моделью должно быть установлено отношение похожести, подобия. Существуют разные способы решения этой проблемы.
Прямое подобие – фотография, макет здания, выкройка одежды, и т.д. Следует всегда помнить о проблеме переноса результатов моделирования на оригинал. Например, результаты испытания модели корабля в бассейне не позволяют оценить влияние реальных течений, ветра, волн и т.д., которые не поддаются масштабированию.
Косвенное подобие между оригиналом и моделью устанавливается не в результате их физического взаимодействия, а на основе аналогий, объективно существующих в природе. Например, электромеханическая аналогия колебательных процессов основана на общности математического аппарата описания электрических и механических явлений. Опять следует помнить об ограниченности любых аналогий на практике.
Условное подобие устанавливается в результате соглашения. Например, деньги (модель стоимости), удостоверение личности (официальная модель владельца), разнообразные сигналы (модель сообщения) и т.д. Теория связи и теория управления имеют дело со специфическими моделями условного подобия в виде сигналов. Правила построения и способы использования сигналов – кодирование и декодирование сами стали предметом углубленного изучения (теория кодирования).
Не вдаваясь в подробности, отметим, что условное подобие в принципе не требует фактического сходства, но оно должно учитывать особенности человека-создателя и потребителя моделей. Так, например, модели, предназначенные для слепых, глухонемых и обычных людей используют различные языки. Известно, что арабская символика вытеснила римскую из-за удобства счета. На ЭВМ двоичная символика вытеснила арабскую по тем же соображениям.
1.5.3 Условия реализации свойств моделей
Для того чтобы модель отвечала своему назначению, необходимо обеспечить соответствующие условия для ее функционирования. Их отсутствие лишает модель ее модельных свойств.
Пример.
1) Бумажные деньги могут играть роль модели стоимости пока в среде их обращения существуют правовые нормы и финансовые учреждения, поддерживающие их функционирование. Царские ассигнации и «керенки» может быть и имеют историческую ценность, но уже не как деньги.
2) Программа для ЭВМ дает результат только при определенных условиях и малейшее рассогласование в ней с языком машины полностью обесценивает программу.
Вывод: для реализации свойств модельных функций необходимо, чтобы модель была согласована со средой, в которой ей предстоит функционировать, входила в эту среду не как чуждый ей элемент, а как ее естественная часть.
1.6 Соответствие между моделью и действительностью в аспекте различия
1.6.1 Конечность моделей
Мир, частью которого мы являемся, бесконечен, как бесконечен и любой объект, не только в пространстве и времени, но и в своих связях с другими объектами. И мы сами, как все природные объекты также бесконечны. Однако если иметь в виду не любые наши качества (состав тканей, структуру глаза и т.д.), а лишь те, которые отличают нас от других объектов, то здесь возможности природы ограничены и конечны. Это проявляется в:
ограниченность числа нервных клеток;
ограниченность числа действий, которые мы можем выполнить в единицу времени;
ограничено время доступное для решения конкретной задачи;
ограничены внешние ресурсы, которые можно привлечь для решения конкретной задачи.
Возникает противоречие: необходимо познавать бесконечный мир конечными средствами. Как ни странно, это оказывается возможным – такова человеческая практика.
Особенно наглядно проявляется конечность знаковых моделей. Классический пример: цветок в окне явочной квартиры Штирлица означал провал явки. Ясно, что многочисленные свойства цветка, изучаемые ботаникой, физиологией, икебаной и т.д., не имели прямого отношения к знаковой функции цветка. Модель подобна оригиналу в конечном числе отношений – это один из аспектов конечности реальных моделей,
Другой аспект возникает в связи с реальными моделями, обладающими свойствами непрерывности: ведь непрерывность – одно из проявлений бесконечности.
Однако после открытия атомарности вещества, пространства, а возможно и дискретности времени, реальность непрерывности ставится под сомнение. Не является ли она удобной, экономной абстракцией. Например, для непрерывных сред вводится понятие плотности. Но в реальности нет непрерывных сред, это просто удобная абстрактная модель.