
- •Моделирование и проектирование в инфокоммуникационных технологиях
- •Оглавление
- •Глава 1. Основные понятия, определения, классификация 9
- •Глава 2. Классификация методов моделирования 37
- •Глава 7. Программирование в среде «mathcad» 159
- •Глава 8. Оценка искажений сигналов при прохождении через нелинейные устройства 178
- •Глава 9. Цифровая фильтрация 186
- •Глава 10. Синтез линейных антенных систем 286
- •Глава 11. О моделировании канала связи 314
- •Введение
- •Глава 1. Основные понятия, определения, классификация
- •1.1 Понятия системы, модели и моделирования
- •1.2 Классификация радиотехнических устройств
- •Отличительные признаки устройств согласно данной классификации
- •Устройства пассивного и активного типа
- •Устройства автономного и неавтономного типа
- •Устройство с элементами сосредоточенного и распределенного типа
- •1.3 Основные типы задач в радиотехнике
- •1.4 Развитие понятия модели
- •1.4.1 Модель как философская категория
- •1.4.2 Моделирование – важнейший этап целенаправленной деятельности
- •1.4.3 Познавательные и прагматические модели
- •1.4.4 Статические и динамические модели
- •1.5 Способы воплощения моделей
- •1.5.1 Абстрактные модели и роль языков
- •1.5.2 Материальные модели и виды подобия
- •1.5.3 Условия реализации свойств моделей
- •1.6 Соответствие между моделью и действительностью в аспекте различия
- •1.6.1 Конечность моделей
- •1.6.2 Упрощенность моделей
- •1.6.3 Приближенность моделей
- •1.6.4 Адекватность моделей
- •1.7 Соответствие между моделью и действительностью в аспекте сходство
- •1.7.1 Истинность моделей
- •1.7.2 О сочетании истинного и ложного в модели
- •1.7.3 Сложности алгоритмизации моделирования
- •1.8 Основные типы моделей
- •1.8.1 Понятие проблемной ситуации при создании системы
- •1.8.2 Основные типы формальных моделей
- •1.8.3 Математическое представление модели «черного ящика»
- •1.9 Взаимосвязи моделирования и проектирования
- •1.10 Точность моделирования
- •Глава 2. Классификация методов моделирования
- •2.1 Реальное моделирование
- •2.2 Мысленное моделирование
- •Глава 3. Математическое моделирование
- •3.1 Этапы создания математических моделей
- •З.2 Компонентные и топологические уравнения моделируемого объекта
- •3.3 Компонентные и топологические уравнения электрической цепи
- •Глава 4. Особенности компьютерных моделей
- •4.1 Компьютерное моделирование и вычислительный эксперимент
- •4.2 Программные средства компьютерного моделирования
- •Глава 5. Особенности радиосистемы как объекта изучения методами моделирования на эвм
- •5.1 Классы радиосистем
- •5.2 Формальное описание радиосистем
- •Глава 6. Применение пакета прикладных программmathcadдля моделирования телекоммуникационных устройств
- •6.1 Основные сведения об универсальном математическом пакете программMathCad
- •6.2 Основы языкаMathCad
- •3.246Е – 3 – это число 0.003246;
- •6.2.1 Тип входного языкаMathCad
- •6.2.2 Описание текстового окнаMathCad
- •6.2.3 Курсор ввода
- •6.2.4 Содержание командных меню (2-ая строка)
- •6.2.5 Управление элементами интерфейса
- •6.2.6 Выделение областей
- •6.2.7 Изменение масштаба документа
- •6.2.8 Обновление экрана
- •6.2.9 Содержание инструментальных панелей подменю «математика»
- •6.3 Основные правила работы в среде «MathCad»
- •6.3.1 Удаление математических выражений
- •6.3.2 Копирование математических выражений
- •6.3.3 Перенос математических выражений
- •6.3.4 Вписывание в программу текстовых комментариев
- •6.4 Построение графиков
- •6.4.1 Построение графиков в декартовой системе координат
- •6.4.2 Построение графиков в полярной системе координат
- •6.4.3 Изменение формата графиков
- •6.4.4 Правила трассировки графиков
- •6.4.5 Правила просмотра участков двумерных графиков
- •6.5 Правила вычислений в среде «MathCad»
- •6.6 Анализ линейных устройств
- •6.6.1 Передаточная функция, коэффициент передачи, временные и частотные характеристики
- •6.6.2 Коэффициент передачиK(jω)
- •6.6.3 Амплитудно-частотная характеристика (ачх)
- •6.6.4 Определение переходной и импульсной характеристик
- •6.7 Методы решения в среде «MathCad» алгебраических и трансцендентных уравнений и организация вычислений по циклу
- •6.7.1 Определение корней алгеброических уравнений
- •6.7.2 Определение корней трансцендентных уравнений
- •6.7.3 Вычисления по циклу
- •6.8 Обработка данных
- •6.8.1 Кусочно-линейная интерполяция
- •6.8.2 Сплайн-интерполяция
- •6.8.3 Экстраполяция
- •6.9 Символьные вычисления
- •6.10 Оптимизация в расчетах рэа
- •6.10.1 Стратегии одномерной оптимизации
- •6.10.2 Локальные и глобальные экстремумы
- •6.10.3 Методы включения интервалов неопределенности
- •6.10.4 Критерии оптимизации
- •6.10.5 Методы поиска экстремума функции цели
- •6.10.6 Пример записи целевой функции при синтезе фильтров
- •6.11 Анимация графического материала в средеMathCad
- •6.11.1 Подготовка к анимации
- •6.11.2 Пример анимации графика
- •6.11.3 Вызов проигрывателя анимации графиков и видео файлов
- •6.12 Установка связиMathCaDс другими программными средами
- •Глава 7. Программирование в среде «mathcad»
- •7.1 Обзор инструкций
- •7.1.1 Инструкция Add line
- •7.1.2 Оператор внутреннего присваивания
- •7.1.3 Условная инструкция «if»
- •7.2.1 Особенность присвоения значения функции
- •7.2.2 Общие принципы задания операторов
- •7.3 Примеры составления программ
- •7.3.1 Пример задания комплекса условий
- •7.3.2 Пример расчета с заданной точностью
- •7.3.3 Пример расчета различных параметров одной и той же программой
- •7.4 Создание новых функций с помощью программирования
- •7.5 Поиск ошибок в программах
- •Глава 8. Оценка искажений сигналов при прохождении через нелинейные устройства
- •8.1 Оценка нелинейных искажений при компресии и ограничении аудиосигналов на входе цифровых трактов
- •Глава 9. Цифровая фильтрация
- •9.1 Рекурсивные цифровые фильтры
- •9.2 Формы реализации рекурсивных фильтров
- •9.3 Методика синтеза рф по аналоговому прототипу
- •9.3.1 Синтез аналогового фильтра прототипа
- •9.3.2 Расчет числа звеньев и определение полюсов и нулей низкочастотного фильтра прототипа
- •9.3.3 Переход от аналогового фильтра прототипа к цифровому фильтру
- •9.3.4 Порядок и пример синтеза цифрового рекурсивного фильтра
- •9.4 Синтез нерекурсивных фильтров
- •9.4.1 Синтез нерекурсивных фильтров методом весовых функций
- •9.4.2 Основные параметры весовых функций
- •9.4.3 Импульсные характеристики идеальных цф различного типа
- •9.4.4 Методика синтеза нф методом весовых функций и пример синтеза полосового цифрового фильтра
- •9.5 Синтез нерекурсивного фильтра методом частотной выборки
- •9.5.1 Методика синтеза нф методом частотной выборки
- •9.6 АктивныйRc-фильтры
- •9.7 Передаточные функции фильтров
- •9.8 Преобразование частот
- •9.9 Реализация звеньев первого порядка
- •9.10 Реализация звеньев второго порядка
- •Глава 10. Синтез линейных антенных систем
- •10.1 Общая постановка задачи
- •10.2 Характеристика направленности как целевая функция
- •10.3 Синтез линейного излучателя методом парциальных диаграмм направленности
- •10.4 Синтез излучателей методом интеграла Фурье
- •10.5 Описание программ синтеза линейного излучателя в средеMathcad
- •Определяем число отсчетов (выборок по u)! и определяем значение парциалов (коэффициентов Котельникова) в этих точках! Построение фукция распределения возбуждения рядом Фурье!
- •Программа расчета х.Н. Линейного излучателя методом Фурье! Определяем расчетную частоту и размеры антенны! Формируем дн антенны!
- •10.6 Синфазные антенные решетки с оптимальной диаграммой направленности
- •10.7 Расчет амплитудного распределения возбуждения в линейных антенных решетках
- •10.8 Программа синтез антенной решетки по заданному уровню боковых лепестков
- •Расчет дн антенны по найденному распределению питающих токов.
- •11.2 Определение погрешностей моделирования (оценки средней вероятности ошибки) методом малых отклонений
- •11.3 Погрешности моделирования канала при исследованиях двоичных систем связи
- •11.3.1 Когерентный прием при моделировании релеевских замираний
- •11.3.2 Прием сигналов относительной фазовой телеграфии при моделировании релеевских замираний
- •Литература
7.2.1 Особенность присвоения значения функции
1) Если значение присваивается функции, то в отличии от стандартного синтаксиса MathCAD, определять переменные, от которых она зависит, в скобках ее имени не нужно.
Пример:
2) присвоение значений используемым функциям и переменным может быть произведено как в самой программе, так и выше нее.
При этом если в программе произвести определение уже заданных выше величин, то они переопределяться.
В свою очередь определения, сделанные в самой программе, никак не влияют на остальной документ.
Пример:
Вводим «Add Line» требуемое количество раз:
В конце программы (блока) вводится имя той величины, которая должна быть выдана в качестве ответа (здесь Т).
Присваивать программное имя необязательно ─ можно просто поставить после нее знак « = », при этом результат будет выведен непосредственно справа от алгоритма.
После нажатия на кнопку « = » справа от алгоритма будет получено:
7.2.2 Общие принципы задания операторов
1) Что бы задать нужный оператор, необходимо использовать соответствующие команды панели «программирование».
Просто набрать оператор с клавиатуры нельзя ─ он будет воспринят системой как неизвестная функция.
Кроме того, каждый оператор программирования имеет свое сочетание «горячих клавиш», узнать которое можно, подведя курсор к соответствующей ему кнопке рабочей панели.
2) Задание комплекса условий в программных операторах можно делать по разному:
─ Можно поставить курсор в соответствующий маркер оператора, задействовать команду «Add Line» (добавить линию). В появившемся программном блоке определить условия. При таком задании условий оператор будет выполнен, если будет выполнено хотя бы одно условие из множества условий (что соответствует использованию логического оператора «или»).
─ В том случае, если оператор должен быть задействован при условии выполнения всего комплекса условий, следует использовать логическое умножение «И» панели «булевы».
7.3 Примеры составления программ
7.3.1 Пример задания комплекса условий
Пусть требуется вычислить сумму гармонического ряда из произвольного числа членов n. Условия суммирования ─ сумма не должна превысить 10.
Суммирование будем осуществлять с использованием оператора условного цикла «While» (пока).
Принцип его работы следующий:
если выполняется условие в его правом маркере, то выполняются и выражения в левом.
Можно записать программу следующим образом:
Очевидно, что программа работает некорректно.
Произведем суммирование с помощью специального оператора:
Ошибка в программе связанна с тем, что записана связь условий подобно логическому «ИЛИ».
Это заставляет оператор работать, пока выполняется хотя бы одно условие.
Поэтому суммирование будет производится до тех пор, пока результат не достигнет 10 (при этом будет просуммировано 12370 элементов вместо необходимых 10000).
Запишем программу, используя для связи условий логическое «И». В этом случае для продолжения цикла «while» требуется, чтобы исполнялись оба условия. Когда число членов суммы достигнет n, одно из условий перестанет выполнятся, цикл останавливается и выдается верный ответ.
Таким образом видно, что правильно работает программа, в которой комплекс условий записан через логический оператор.
Во втором случае, когда число членов достигает 10000 (т.е. заданного n), одно из условий перестает выполнятся, цикл останавливается и выдается верный ответ.