
- •Моделирование и проектирование в инфокоммуникационных технологиях
- •Оглавление
- •Глава 1. Основные понятия, определения, классификация 9
- •Глава 2. Классификация методов моделирования 37
- •Глава 7. Программирование в среде «mathcad» 159
- •Глава 8. Оценка искажений сигналов при прохождении через нелинейные устройства 178
- •Глава 9. Цифровая фильтрация 186
- •Глава 10. Синтез линейных антенных систем 286
- •Глава 11. О моделировании канала связи 314
- •Введение
- •Глава 1. Основные понятия, определения, классификация
- •1.1 Понятия системы, модели и моделирования
- •1.2 Классификация радиотехнических устройств
- •Отличительные признаки устройств согласно данной классификации
- •Устройства пассивного и активного типа
- •Устройства автономного и неавтономного типа
- •Устройство с элементами сосредоточенного и распределенного типа
- •1.3 Основные типы задач в радиотехнике
- •1.4 Развитие понятия модели
- •1.4.1 Модель как философская категория
- •1.4.2 Моделирование – важнейший этап целенаправленной деятельности
- •1.4.3 Познавательные и прагматические модели
- •1.4.4 Статические и динамические модели
- •1.5 Способы воплощения моделей
- •1.5.1 Абстрактные модели и роль языков
- •1.5.2 Материальные модели и виды подобия
- •1.5.3 Условия реализации свойств моделей
- •1.6 Соответствие между моделью и действительностью в аспекте различия
- •1.6.1 Конечность моделей
- •1.6.2 Упрощенность моделей
- •1.6.3 Приближенность моделей
- •1.6.4 Адекватность моделей
- •1.7 Соответствие между моделью и действительностью в аспекте сходство
- •1.7.1 Истинность моделей
- •1.7.2 О сочетании истинного и ложного в модели
- •1.7.3 Сложности алгоритмизации моделирования
- •1.8 Основные типы моделей
- •1.8.1 Понятие проблемной ситуации при создании системы
- •1.8.2 Основные типы формальных моделей
- •1.8.3 Математическое представление модели «черного ящика»
- •1.9 Взаимосвязи моделирования и проектирования
- •1.10 Точность моделирования
- •Глава 2. Классификация методов моделирования
- •2.1 Реальное моделирование
- •2.2 Мысленное моделирование
- •Глава 3. Математическое моделирование
- •3.1 Этапы создания математических моделей
- •З.2 Компонентные и топологические уравнения моделируемого объекта
- •3.3 Компонентные и топологические уравнения электрической цепи
- •Глава 4. Особенности компьютерных моделей
- •4.1 Компьютерное моделирование и вычислительный эксперимент
- •4.2 Программные средства компьютерного моделирования
- •Глава 5. Особенности радиосистемы как объекта изучения методами моделирования на эвм
- •5.1 Классы радиосистем
- •5.2 Формальное описание радиосистем
- •Глава 6. Применение пакета прикладных программmathcadдля моделирования телекоммуникационных устройств
- •6.1 Основные сведения об универсальном математическом пакете программMathCad
- •6.2 Основы языкаMathCad
- •3.246Е – 3 – это число 0.003246;
- •6.2.1 Тип входного языкаMathCad
- •6.2.2 Описание текстового окнаMathCad
- •6.2.3 Курсор ввода
- •6.2.4 Содержание командных меню (2-ая строка)
- •6.2.5 Управление элементами интерфейса
- •6.2.6 Выделение областей
- •6.2.7 Изменение масштаба документа
- •6.2.8 Обновление экрана
- •6.2.9 Содержание инструментальных панелей подменю «математика»
- •6.3 Основные правила работы в среде «MathCad»
- •6.3.1 Удаление математических выражений
- •6.3.2 Копирование математических выражений
- •6.3.3 Перенос математических выражений
- •6.3.4 Вписывание в программу текстовых комментариев
- •6.4 Построение графиков
- •6.4.1 Построение графиков в декартовой системе координат
- •6.4.2 Построение графиков в полярной системе координат
- •6.4.3 Изменение формата графиков
- •6.4.4 Правила трассировки графиков
- •6.4.5 Правила просмотра участков двумерных графиков
- •6.5 Правила вычислений в среде «MathCad»
- •6.6 Анализ линейных устройств
- •6.6.1 Передаточная функция, коэффициент передачи, временные и частотные характеристики
- •6.6.2 Коэффициент передачиK(jω)
- •6.6.3 Амплитудно-частотная характеристика (ачх)
- •6.6.4 Определение переходной и импульсной характеристик
- •6.7 Методы решения в среде «MathCad» алгебраических и трансцендентных уравнений и организация вычислений по циклу
- •6.7.1 Определение корней алгеброических уравнений
- •6.7.2 Определение корней трансцендентных уравнений
- •6.7.3 Вычисления по циклу
- •6.8 Обработка данных
- •6.8.1 Кусочно-линейная интерполяция
- •6.8.2 Сплайн-интерполяция
- •6.8.3 Экстраполяция
- •6.9 Символьные вычисления
- •6.10 Оптимизация в расчетах рэа
- •6.10.1 Стратегии одномерной оптимизации
- •6.10.2 Локальные и глобальные экстремумы
- •6.10.3 Методы включения интервалов неопределенности
- •6.10.4 Критерии оптимизации
- •6.10.5 Методы поиска экстремума функции цели
- •6.10.6 Пример записи целевой функции при синтезе фильтров
- •6.11 Анимация графического материала в средеMathCad
- •6.11.1 Подготовка к анимации
- •6.11.2 Пример анимации графика
- •6.11.3 Вызов проигрывателя анимации графиков и видео файлов
- •6.12 Установка связиMathCaDс другими программными средами
- •Глава 7. Программирование в среде «mathcad»
- •7.1 Обзор инструкций
- •7.1.1 Инструкция Add line
- •7.1.2 Оператор внутреннего присваивания
- •7.1.3 Условная инструкция «if»
- •7.2.1 Особенность присвоения значения функции
- •7.2.2 Общие принципы задания операторов
- •7.3 Примеры составления программ
- •7.3.1 Пример задания комплекса условий
- •7.3.2 Пример расчета с заданной точностью
- •7.3.3 Пример расчета различных параметров одной и той же программой
- •7.4 Создание новых функций с помощью программирования
- •7.5 Поиск ошибок в программах
- •Глава 8. Оценка искажений сигналов при прохождении через нелинейные устройства
- •8.1 Оценка нелинейных искажений при компресии и ограничении аудиосигналов на входе цифровых трактов
- •Глава 9. Цифровая фильтрация
- •9.1 Рекурсивные цифровые фильтры
- •9.2 Формы реализации рекурсивных фильтров
- •9.3 Методика синтеза рф по аналоговому прототипу
- •9.3.1 Синтез аналогового фильтра прототипа
- •9.3.2 Расчет числа звеньев и определение полюсов и нулей низкочастотного фильтра прототипа
- •9.3.3 Переход от аналогового фильтра прототипа к цифровому фильтру
- •9.3.4 Порядок и пример синтеза цифрового рекурсивного фильтра
- •9.4 Синтез нерекурсивных фильтров
- •9.4.1 Синтез нерекурсивных фильтров методом весовых функций
- •9.4.2 Основные параметры весовых функций
- •9.4.3 Импульсные характеристики идеальных цф различного типа
- •9.4.4 Методика синтеза нф методом весовых функций и пример синтеза полосового цифрового фильтра
- •9.5 Синтез нерекурсивного фильтра методом частотной выборки
- •9.5.1 Методика синтеза нф методом частотной выборки
- •9.6 АктивныйRc-фильтры
- •9.7 Передаточные функции фильтров
- •9.8 Преобразование частот
- •9.9 Реализация звеньев первого порядка
- •9.10 Реализация звеньев второго порядка
- •Глава 10. Синтез линейных антенных систем
- •10.1 Общая постановка задачи
- •10.2 Характеристика направленности как целевая функция
- •10.3 Синтез линейного излучателя методом парциальных диаграмм направленности
- •10.4 Синтез излучателей методом интеграла Фурье
- •10.5 Описание программ синтеза линейного излучателя в средеMathcad
- •Определяем число отсчетов (выборок по u)! и определяем значение парциалов (коэффициентов Котельникова) в этих точках! Построение фукция распределения возбуждения рядом Фурье!
- •Программа расчета х.Н. Линейного излучателя методом Фурье! Определяем расчетную частоту и размеры антенны! Формируем дн антенны!
- •10.6 Синфазные антенные решетки с оптимальной диаграммой направленности
- •10.7 Расчет амплитудного распределения возбуждения в линейных антенных решетках
- •10.8 Программа синтез антенной решетки по заданному уровню боковых лепестков
- •Расчет дн антенны по найденному распределению питающих токов.
- •11.2 Определение погрешностей моделирования (оценки средней вероятности ошибки) методом малых отклонений
- •11.3 Погрешности моделирования канала при исследованиях двоичных систем связи
- •11.3.1 Когерентный прием при моделировании релеевских замираний
- •11.3.2 Прием сигналов относительной фазовой телеграфии при моделировании релеевских замираний
- •Литература
6.10.6 Пример записи целевой функции при синтезе фильтров
Проектирование фильтра осуществляется путем процедуры синтеза, включающего два этапа – аппроксимацию и реализацию, исходя из заданных полос пропускания и заграждения, и потерь в них. На первом этапе – аппроксимации – производится замена требуемой характеристики затухания фильтра функцией Чебышева или Баттерворта, либо иной зависимостью отвечающей условиям физической реализуемости. На втором этапе – реализация – определяется структура и параметры элементов фильтра.
Применение компьютера позволило изменить данный подход к синтезу фильтров, имеющих ряд ограничений, и повысить точность расчетов за счет возможности учета ряда факторов.
При компьютерном подходе аппроксимация и реализация заменяются процедурой оптимизации. Производится непосредственный расчет характеристик фильтра на основе определенных рекуррентных соотношений. Осуществляется перебор нескольких типовых структур фильтров и оптимизации параметров в каждом варианте на основе поисковых методов глобального и локального минимума целевой функции.
При таком подходе процедура синтеза представляется как множество вариантов анализа с поиском наилучшего из них согласно определенному критерию. Такая методика предусматривает огромный объем рутинных вычислений, поэтому практическая реализация возможна только с применением компьютера.
При составлении программы параметрического синтеза фильтра функция цели, подлежащая минимизации, может быть представлена в следующем виде:
fn1..fn2 – полоса пропускания;
fm1..fm2 – полоса заграждения;
fS1..fS2 – полоса частот фазовой характеристики;
Bп(fk) – полученное затухание фильтра в полосе пропускания на частоте fk ;
Bп.тр(fk) – требуемое затухание фильтра в полосе пропускания;
Bз(fk) – полученное затухание фильтра в полосе заграждения на частоте fk ;
Bз.тр(fk) – требуемое затухание фильтра в полосе заграждения;
φ (fk) – полученное значение ФЧХ на частоте f = fk;
φтр (fk) – требуемое значение ФЧХ на той же частоте f = fk;
V1, V2, V3 – коэффициенты веса, определяющие соотношение требований по затуханию, предъявляющих к полосам пропускания и заграждения, а также другим параметрам.
В качестве примера можно привести задачу минимизации порядка фильтра, обеспечивающего требуемые значения затухания в полосах пропускания и заграждения, а также группового времени запаздывания в полосе пропускания для ФНЧ Баттерворта.
Введем обозначения:
Amin – требуемое затухание фильтра в полосе заграждения;
Amax – требуемое затухание (допустимая неравномерность) фильтра в полосе пропускания;
Ω – текучая частота;
Ωz – нормированная частота среза (отношение граничной частоты полосы заграждения к граничной частоте полосы пропускания);
НАb(Ω) – амплитудно-частотная характеристика ФНЧ;
LАb(Ω) – рабочие затухание ФНЧ;
βb (Ω) – фазо-частотная характеристика ФНЧ;
τb(Ω) – групповое время запаздывания;
Пусть заданы значения:
Amax : ≤ 2; Amin : ≥ 20 ; Ωz : = 1.6;
Задаем пределы изменения и шаг изменения текущей частоты:
Ω : = 0.2 * Ωz/100 … 2 * Ωz
Wzcp – нормированная частота среза (fгрпн/fв)
Nb – порядок аналогового ФНЧ Баттерворта
Nc – порядок цифрового ФНЧ Чбышева
w – текущая частота
Hb(w) – АЧХ ФНЧ Баттерворта
Нс(w ) – ФЧХ ФНЧ Чебышева
τb(w) – групповое время запаздывания ФНЧ Баттерворта
τс(w) – групповое время запаздывания ФНЧ Чебышева
Amin1 – требуемое рабочее ослабление на частоте среза для фильтра Баттерворта
Amin2 – требуемое рабочее ослабление на частоте среза для фильтра Чебышева
Amax1 и Amax2 – допустимые неравномерности в полосе пропускания фильтров Баттерворта и Чебышева
Задание начальных данных
Допустимые значения группового времени запаздывания (ГВЗ) ФНЧ для аудиосогналов (из норм для трактов звукового вещания)
Fb – верхняя частота в спектре звукового сигнала
Amin – рабочее затухание на частоте среза (граничная частота полосы заграждения)
Amax – неравномерность в полосе пропускания
Допустимая неравномерность группового времени запаздывания τd(w)
Fb:=10000
w1 |
40/ Fb = 4×10-3 |
τd(w1) |
55 мс |
w2 |
75/ Fb = 7,5×10-3 |
τd(w2) |
24 мс |
w3 |
100/ Fb = 0,01 |
τd(w3) |
20 мс |
w4 |
6400/ Fb = 0,64 |
τd(w4) |
5 мс |
w5 |
7000/ Fb = 0,7 |
τd(w5) |
10 мс |
w6 |
14000/ Fb = 1,4 |
τd(w6) |
8 мс |
w7 |
15000/ Fb = 1,5 |
τd(w7) |
12 мс |
Рис. 6.53 Нормы на ГВЗ
Запишем выражения, необходимые для определения τb(w). Сначала определяется минимально необходимый порядок фильтра, удовлетворяющий заданным параметрам.
То есть требуется ФНЧ Баттерворта 6-го порядка. Далее следует определить наибольший порядок фильтра, удовлетворяющий требованиям по групповой задержке.
Запишем функцию цели для нахождения максимального порядка ФНЧ, удовлетворяющего требованиям по τ. Нормированные частоты выбраны 0,64 (по минимально допустимому значению групповой задержки) и 1 (соответствет Fb). Будем искать минимум функции цели, при котором задержка не превышает допустимого значения.
Введем пределы варьируемых параметров с помощью ключевого слова Given:
Поскольку N – целое число и N может быть меньше 6 для удовлетворения требований по затуханию чем меньше N, тем меньше получается значение τb , то принимаем N=6 и производим проверку на требуемых частотах:
Таким образом, допустимо использование ФНЧ Баттерворта порядка 7, а требуется Nb=6. Следовательно, для Фнч Баттерворта следует принять порядок фильтра равным 6.
Определим теперь требуемый порядок ФНЧ Чебышева:
То есть требуется ФНЧ Чебышева 4-го порядка. Для него произведем проверку получаемого времени задержки на нормированных частотах 0.64 и 1.
Задание начальных значений параметров
Рис 6.54 Групповое время запаздывания (в мс )
Таким образом ФНЧ Чебышева 4-го порядка удовлетворяет всем предъявляемым требованиям.
Рис. 6.55 АЧХ ФНЧ Чебышева 4-го порядка
Рис 6.56 Зависимости допустимой и полученных групповых задержек
Вопросы для самоконтроля
Понятие оптимизациив расчетах РЭА
Понятие функции цели
Меры расхождения при определении функции цели
Методы поиска экстремума функции цели
Пример записи функции цели при синтезе фильтров