
- •Моделирование и проектирование в инфокоммуникационных технологиях
- •Оглавление
- •Глава 1. Основные понятия, определения, классификация 9
- •Глава 2. Классификация методов моделирования 37
- •Глава 7. Программирование в среде «mathcad» 159
- •Глава 8. Оценка искажений сигналов при прохождении через нелинейные устройства 178
- •Глава 9. Цифровая фильтрация 186
- •Глава 10. Синтез линейных антенных систем 286
- •Глава 11. О моделировании канала связи 314
- •Введение
- •Глава 1. Основные понятия, определения, классификация
- •1.1 Понятия системы, модели и моделирования
- •1.2 Классификация радиотехнических устройств
- •Отличительные признаки устройств согласно данной классификации
- •Устройства пассивного и активного типа
- •Устройства автономного и неавтономного типа
- •Устройство с элементами сосредоточенного и распределенного типа
- •1.3 Основные типы задач в радиотехнике
- •1.4 Развитие понятия модели
- •1.4.1 Модель как философская категория
- •1.4.2 Моделирование – важнейший этап целенаправленной деятельности
- •1.4.3 Познавательные и прагматические модели
- •1.4.4 Статические и динамические модели
- •1.5 Способы воплощения моделей
- •1.5.1 Абстрактные модели и роль языков
- •1.5.2 Материальные модели и виды подобия
- •1.5.3 Условия реализации свойств моделей
- •1.6 Соответствие между моделью и действительностью в аспекте различия
- •1.6.1 Конечность моделей
- •1.6.2 Упрощенность моделей
- •1.6.3 Приближенность моделей
- •1.6.4 Адекватность моделей
- •1.7 Соответствие между моделью и действительностью в аспекте сходство
- •1.7.1 Истинность моделей
- •1.7.2 О сочетании истинного и ложного в модели
- •1.7.3 Сложности алгоритмизации моделирования
- •1.8 Основные типы моделей
- •1.8.1 Понятие проблемной ситуации при создании системы
- •1.8.2 Основные типы формальных моделей
- •1.8.3 Математическое представление модели «черного ящика»
- •1.9 Взаимосвязи моделирования и проектирования
- •1.10 Точность моделирования
- •Глава 2. Классификация методов моделирования
- •2.1 Реальное моделирование
- •2.2 Мысленное моделирование
- •Глава 3. Математическое моделирование
- •3.1 Этапы создания математических моделей
- •З.2 Компонентные и топологические уравнения моделируемого объекта
- •3.3 Компонентные и топологические уравнения электрической цепи
- •Глава 4. Особенности компьютерных моделей
- •4.1 Компьютерное моделирование и вычислительный эксперимент
- •4.2 Программные средства компьютерного моделирования
- •Глава 5. Особенности радиосистемы как объекта изучения методами моделирования на эвм
- •5.1 Классы радиосистем
- •5.2 Формальное описание радиосистем
- •Глава 6. Применение пакета прикладных программmathcadдля моделирования телекоммуникационных устройств
- •6.1 Основные сведения об универсальном математическом пакете программMathCad
- •6.2 Основы языкаMathCad
- •3.246Е – 3 – это число 0.003246;
- •6.2.1 Тип входного языкаMathCad
- •6.2.2 Описание текстового окнаMathCad
- •6.2.3 Курсор ввода
- •6.2.4 Содержание командных меню (2-ая строка)
- •6.2.5 Управление элементами интерфейса
- •6.2.6 Выделение областей
- •6.2.7 Изменение масштаба документа
- •6.2.8 Обновление экрана
- •6.2.9 Содержание инструментальных панелей подменю «математика»
- •6.3 Основные правила работы в среде «MathCad»
- •6.3.1 Удаление математических выражений
- •6.3.2 Копирование математических выражений
- •6.3.3 Перенос математических выражений
- •6.3.4 Вписывание в программу текстовых комментариев
- •6.4 Построение графиков
- •6.4.1 Построение графиков в декартовой системе координат
- •6.4.2 Построение графиков в полярной системе координат
- •6.4.3 Изменение формата графиков
- •6.4.4 Правила трассировки графиков
- •6.4.5 Правила просмотра участков двумерных графиков
- •6.5 Правила вычислений в среде «MathCad»
- •6.6 Анализ линейных устройств
- •6.6.1 Передаточная функция, коэффициент передачи, временные и частотные характеристики
- •6.6.2 Коэффициент передачиK(jω)
- •6.6.3 Амплитудно-частотная характеристика (ачх)
- •6.6.4 Определение переходной и импульсной характеристик
- •6.7 Методы решения в среде «MathCad» алгебраических и трансцендентных уравнений и организация вычислений по циклу
- •6.7.1 Определение корней алгеброических уравнений
- •6.7.2 Определение корней трансцендентных уравнений
- •6.7.3 Вычисления по циклу
- •6.8 Обработка данных
- •6.8.1 Кусочно-линейная интерполяция
- •6.8.2 Сплайн-интерполяция
- •6.8.3 Экстраполяция
- •6.9 Символьные вычисления
- •6.10 Оптимизация в расчетах рэа
- •6.10.1 Стратегии одномерной оптимизации
- •6.10.2 Локальные и глобальные экстремумы
- •6.10.3 Методы включения интервалов неопределенности
- •6.10.4 Критерии оптимизации
- •6.10.5 Методы поиска экстремума функции цели
- •6.10.6 Пример записи целевой функции при синтезе фильтров
- •6.11 Анимация графического материала в средеMathCad
- •6.11.1 Подготовка к анимации
- •6.11.2 Пример анимации графика
- •6.11.3 Вызов проигрывателя анимации графиков и видео файлов
- •6.12 Установка связиMathCaDс другими программными средами
- •Глава 7. Программирование в среде «mathcad»
- •7.1 Обзор инструкций
- •7.1.1 Инструкция Add line
- •7.1.2 Оператор внутреннего присваивания
- •7.1.3 Условная инструкция «if»
- •7.2.1 Особенность присвоения значения функции
- •7.2.2 Общие принципы задания операторов
- •7.3 Примеры составления программ
- •7.3.1 Пример задания комплекса условий
- •7.3.2 Пример расчета с заданной точностью
- •7.3.3 Пример расчета различных параметров одной и той же программой
- •7.4 Создание новых функций с помощью программирования
- •7.5 Поиск ошибок в программах
- •Глава 8. Оценка искажений сигналов при прохождении через нелинейные устройства
- •8.1 Оценка нелинейных искажений при компресии и ограничении аудиосигналов на входе цифровых трактов
- •Глава 9. Цифровая фильтрация
- •9.1 Рекурсивные цифровые фильтры
- •9.2 Формы реализации рекурсивных фильтров
- •9.3 Методика синтеза рф по аналоговому прототипу
- •9.3.1 Синтез аналогового фильтра прототипа
- •9.3.2 Расчет числа звеньев и определение полюсов и нулей низкочастотного фильтра прототипа
- •9.3.3 Переход от аналогового фильтра прототипа к цифровому фильтру
- •9.3.4 Порядок и пример синтеза цифрового рекурсивного фильтра
- •9.4 Синтез нерекурсивных фильтров
- •9.4.1 Синтез нерекурсивных фильтров методом весовых функций
- •9.4.2 Основные параметры весовых функций
- •9.4.3 Импульсные характеристики идеальных цф различного типа
- •9.4.4 Методика синтеза нф методом весовых функций и пример синтеза полосового цифрового фильтра
- •9.5 Синтез нерекурсивного фильтра методом частотной выборки
- •9.5.1 Методика синтеза нф методом частотной выборки
- •9.6 АктивныйRc-фильтры
- •9.7 Передаточные функции фильтров
- •9.8 Преобразование частот
- •9.9 Реализация звеньев первого порядка
- •9.10 Реализация звеньев второго порядка
- •Глава 10. Синтез линейных антенных систем
- •10.1 Общая постановка задачи
- •10.2 Характеристика направленности как целевая функция
- •10.3 Синтез линейного излучателя методом парциальных диаграмм направленности
- •10.4 Синтез излучателей методом интеграла Фурье
- •10.5 Описание программ синтеза линейного излучателя в средеMathcad
- •Определяем число отсчетов (выборок по u)! и определяем значение парциалов (коэффициентов Котельникова) в этих точках! Построение фукция распределения возбуждения рядом Фурье!
- •Программа расчета х.Н. Линейного излучателя методом Фурье! Определяем расчетную частоту и размеры антенны! Формируем дн антенны!
- •10.6 Синфазные антенные решетки с оптимальной диаграммой направленности
- •10.7 Расчет амплитудного распределения возбуждения в линейных антенных решетках
- •10.8 Программа синтез антенной решетки по заданному уровню боковых лепестков
- •Расчет дн антенны по найденному распределению питающих токов.
- •11.2 Определение погрешностей моделирования (оценки средней вероятности ошибки) методом малых отклонений
- •11.3 Погрешности моделирования канала при исследованиях двоичных систем связи
- •11.3.1 Когерентный прием при моделировании релеевских замираний
- •11.3.2 Прием сигналов относительной фазовой телеграфии при моделировании релеевских замираний
- •Литература
6.6 Анализ линейных устройств
Определяющим свойством линейных устройств является независимость их параметров, характеристик и свойств от амплитуды сигнала.
Иногда нелинейные устройства могут рассматриваться как линейные при относительно малой амплитуде входного сигнала (не выходит за пределы линейных характеристик).
Математической основой анализа линейных устройств является система линейных дифференциальных уравнений.
Поиск решений базируется на преобразовании Лапласа (временный подход), или Фурье (спектральный анализ).
6.6.1 Передаточная функция, коэффициент передачи, временные и частотные характеристики
Работу линейного устройства определяют два вида характеристик – временные и частотные.
Передаточная функция устройства K(p), позволяющая найти временные характеристики определяется согласно преобразованию Лапласа.
Согласно преобразованию Фурье определяется коэффициент передачи K(jω), определяющий частотные свойства объекта.
Между K(p) и K(jω) существует прямая связь, позволяющая от временных характеристик перейти к частотным и обратно.
Элементарным звеном линейной системы является четырехполюсник (рис. 6.31).
Рис.6.31 Четырехполюсник
Свойства линейного четырехполюсника можно описать с помощью линейного дифференциального уравнения n-й степени:
где X(t) – входной сигнал, а Y(t) – выходной.
Согласно преобразованию Лапласа-Карсона:
где φ(p) – изображение оригинала ψ(t) (значение ψ(t)=0 при t<0).
Уравнение (1) можно записать в операционной форме:
из которой получим передаточную функцию устройства:
или при разложении числителя и знаменателя на множители (n≤m):
где
pa1,
pa2,
pan
– корни уравнения
,
называемые нулями передаточной функцииK(p);
pb1,
pb2,
pbm
- корни уравнения
,
называемые полюсами передаточной
функцииK(p).
В устойчивой системе все полюсы оператора K(p) располагаются в левой полуплоскости комплексного переменного:
т.е. действительные части всех полюсов
Re(pbk)<0, где k=0,1,2….m
6.6.2 Коэффициент передачиK(jω)
,
где
и
– спектральные плотности выходного и
входного сигнала (определяются как
преобразование Фурье отY(t)
и X(t)).
Учитывая, что интеграл Фурье есть частный случай преобразования Лапласа при p=jω из передаточной функции путем подстановки получим комплексный коэффициент передачи устройства:
Это выражение можно представить в виде:
,
где модуль и фазу коэффициента передачи можно выразить через действительную и мнимую части комплексного числа:
,
С помощью приведенных выражений можно определить частотные и временные характеристики линейного устройства.
6.6.3 Амплитудно-частотная характеристика (ачх)
Это зависимость модуля комплексного коэффициента передачи от частоты:
Определение АЧХ с помощью пакета программ MathCAD для электрической цепи 2-ого порядка (рис. 6.32).
Рис.6.32 Электрическая цепь 2-ого порядка
Для коэффициента передачи цепи запишем следующее выражение:
,
где
,
,
,
,
.
Примем в программе следующие обозначения:
fp – резонансная частота (Гц);
tk – время (сек);
Q – добротность цепи;
K(f) – комплексный коэффициент передачи K(jω);
A(f) – модуль комплексного коэффициента передачи (в градусах) (ФЧХ);
D(f) – действительная часть комплексного коэффициента передачи;
M(f) – мнимая часть комплексного коэффициента передачи;
NT – число точек отсчета по оси времени;
TH – шаг этого отсчета;
Vb – верхний предел интегрирования по частоте;
Vn – нижний предел интегрирования по частоте;
Фk– переходная характеристика Ф(t);
Нk– импульсная характеристика H(t);
Нижний предел интегрирования не берут равным 0, а принимают равным какому-либо малому значению, например, 0,0001, чтобы избежать деления на 0 при определении переходной характеристики.
Программа расчета частотных характеристик цепи
fp:=10 Q:=5
Далее определяются АЧХ и ФЧХ и строятся их графики
Рис.6.33 График АЧХ Рис.6.34 График ФЧХ