
fiz / Bilet_30
.docxБилет 30
Зако́н электромагни́тной инду́кции Фараде́я является основным законом электродинамики, касающимся принципов работы трансформаторов, дросселей, многих видов электродвигателей и генераторов.[1] Закон гласит:
Для любого замкнутого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур.[1]
или другими словами:
Генерируемая ЭДС пропорциональна скорости изменения магнитного потока.
Закон Фарадея
В любой точке петли магнитный поток через неё равен:
Выбор знака определяется по принципу, имеет ли нормаль к поверхности в данной точке то же направление, что и B, или противоположное. Если нормаль к поверхности имеет то же направление, что и поле B наведённого тока, этот знак отрицательный. Производная по времени от потока (найденная с помощью методов дифференцирования сложной функции или по правилу Лейбница дифференцирования интеграла) равна:
(где v = dxC / dt является скоростью движения петли в направлении оси х), что приводит к:
как и в предыдущем случае.
Эквивалентность этих двух подходов является общеизвестной, и в зависимости от решаемой задачи более практичным может оказаться либо тот, либо другой метод.
Интуитивно привлекательный, но ошибочный подход к использованию правила потока выражает поток через цепь по формуле ΦB = B w ℓ, где w — ширина движущейся петли. Это выражение не зависит от времени, поэтому из этого неправильно следует, что никакой ЭДС не генерируется. Ошибка этого утверждения состоит в том, что в нём не учитывается весь путь тока через замкнутую петлю.
Для правильного использования правила потока мы должны рассмотреть весь путь тока, который включает в себя путь через ободы на верхнем и нижнем дисках. Мы можем выбрать произвольный замкнутый путь через ободы и вращающуюся петлю, и по закону потока найти ЭДС по этому пути. Любой путь, который включает сегмент, прилегающий к вращающейся петле, учитывает относительное движение частей цепи.
В качестве примера рассмотрим путь, проходящий в верхней части цепи в направлении вращения верхнего диска, а в нижней части цепи — в противоположном направлении по отношению к нижнему диску (показано стрелками на рис. 4). В этом случае если вращающаяся петля отклонилась на угол θ от коллекторной петли, то её можно рассматривать как часть цилиндра площадью A = r ℓ θ. Эта площадь перпендикулярна полю B, и вносимый ею вклад в поток равен:
где знак является отрицательным, потому что по правилу правой руки поле B, генерируемое петлёй с током, противоположно по направлению приложенному полю B'. Поскольку это только зависящая от времени часть потока, по закону потока ЭДС равна:
в согласии с формулой закона Лоренца.
Теперь рассмотрим другой путь, в котором проход по ободам дисков выберем через противоположные сегменты. В этом случае связанный поток будет уменьшаться при увеличении θ, но по правилу правой руки токовая петля добавляет приложенное поле B, поэтому ЭДС для этого пути будет точно такое же значение, как и для первого пути. Любой смешанный возвратный путь приводит к такому же результату для значения ЭДС, так что это на самом деле не имеет значения, какой путь выбрать.
Поток через поверхность и ЭДС в контуре
Определение поверхностного интеграла предполагает, что поверхность Σ поделена на мелкие элементы. Каждый элемент связан с вектором dA, величина которого равна площади элемента, а направление — по нормали к элементу во внешнюю сторону.
Векторное поле F(r, t) определено во всём пространстве, а поверхность Σ ограничена кривой ∂Σ, движущейся со скоростью v. По этой поверхности производится интегрирование поля.
Закон электромагнитной индукции Фарадея использует понятие магнитного потока ΦB через замкнутую поверхность Σ, который определён через поверхностный интеграл:
где dA —
площадь элемента поверхности Σ(t), B —
магнитное поле, а B·dA — скалярное
произведение B и dA.
Предполагается, что поверхность имеет
«устье», очерчённое замкнутой кривой,
обозначенной ∂Σ(t).
Закон индукции Фарадея утверждает, что
когда поток изменяется, то при перемещении
единичного положительного пробного
заряда по замкнутой кривой ∂Σ совершается
работа ,
величина которой определяется по
формуле:
где —
величина электродвижущей силы (ЭДС)
в вольтах,
а ΦB — магнитный
поток в веберах.
Направление электродвижущей силы
определяется законом
Ленца.
Для плотно намотанной катушки индуктивности, содержащей N витков, каждый с одинаковым магнитным потоком ΦB, закон индукции Фарадея утверждает, что:
где N — число витков провода, ΦB — магнитный поток в веберах на один виток.
При выборе пути ∂Σ(t) для нахождения ЭДС заметим, что путь должен удовлетворять двум основным требованиям: (i) путь должен быть замкнутым, и (ii) путь должен охватывать относительное движение частей контура (источник происхождения t-зависимости в ∂Σ(t)). К требованиям не относится то, что путь должен совпадать с линией тока, но, конечно, ЭДС, которая находится по закону потока, будет считаться по выбранному пути. Если путь не совпадает с линией тока, то подсчитанная ЭДС, возможно, будет не та ЭДС, которая вызывает ток.
Правило Ленца
Правило Ленца определяет направление индукционного тока и гласит:
Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.
Согласно закону
электромагнитной индукции Фарадея при
изменении магнитного
потока ,
пронизывающего электрический контур,
в нём возбуждается ток,
называемый индукционным.
Величина электродвижущей
силы,
ответственной за этот ток, определяется
уравнением[1]:
где знак «минус» означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт и отражён в правиле Ленца.
Правило Ленца носит обобщённый характер и справедливо в различных физических ситуациях, которые могут отличаться конкретным физическим механизмом возбуждения индукционного тока. Так, если изменение магнитного потока вызвано изменением площади контура (например, за счёт движения одной из сторон прямоугольного контура), то индукционный ток возбуждается силой Лоренца, действующей на электроны перемещаемого проводника в постоянном магнитном поле. Если же изменение магнитного потока связано с изменением величины внешнего магнитного поля, то индукционный ток возбуждается вихревым электрическим полем, появляющимся при изменении магнитного поля. Однако в обоих случаях индукционный ток направлен так, чтобы скомпенсировать изменение потока магнитного поля через контур.
Если внешнее магнитное поле, пронизывающее неподвижный электрический контур, создаётся током, текущим в другом контуре, то индукционный ток может оказаться направлен как в том же направлении, что и внешний, так и в противоположном: это зависит от того, уменьшается или увеличивается внешний ток. Если внешний ток увеличивается, то растёт создаваемое им магнитное поле и его поток, что приводит к появлению индукционного тока, уменьшающего это увеличение. В этом случае индукционный ток направлен в сторону, противоположную основному. В обратном случае, когда внешний ток уменьшается со временем, уменьшение магнитного потока приводит к возбуждению индукционного тока, стремящегося увеличить поток, и этот ток направлен в ту же сторону, что и внешний ток.
Электрический генератор
Рис. 8. Электрический генератор на основе диска Фарадея. Диск вращается с угловой скоростью ω, при этом проводник, расположенный вдоль радиуса, движется в статическом магнитном поле B. Магнитная сила Лоренца v × Bсоздаёт ток вдоль проводника по направлению к ободу, затем цепь замыкается через нижнюю щётку и ось поддержки диска. Таким образом, вследствие механического движения генерируется ток.
Явление возникновения ЭДС, порождённой по закону индукции Фарадея из-за относительного движения контура и магнитного поля, лежит в основе работы электрических генераторов. Если постоянный магнит перемещается относительно проводника или наоборот, проводник перемещается относительно магнита, то возникает электродвижущая сила. Если проводник подключён к электрической нагрузке, то через неё будет течь ток, и следовательно, механическая энергия движения будет превращаться в электрическую энергию. Например, дисковый генератор построен по тому же принципу, как изображено на рис. 4. Другой реализацией этой идеи является диск Фарадея, показанный в упрощённом виде на рис. 8. Обратите внимание, что и анализ рис. 5, и прямое применение закона силы Лоренца показывают, что твёрдый проводящий диск работает одинаковым образом.
В примере диска Фарадея диск вращается в однородном магнитном поле, перпендикулярном диску, в результате чего возникает ток в радиальном плече благодаря силе Лоренца. Интересно понять, как получается, что чтобы управлять этим током, необходима механическая работа. Когда генерируемый ток течёт через проводящий обод, по закону Ампера этот ток создаёт магнитное поле (на рис. 8 оно подписано «индуцированное B» — Induced B). Обод, таким образом, становится электромагнитом, который сопротивляется вращению диска (пример правила Ленца). В дальней части рисунка обратный ток течёт от вращающегося плеча через дальнюю сторону обода к нижней щётке. Поле В, создаваемое этим обратным током, противоположно приложенному полю, вызывая сокращение потока через дальнюю сторону цепи, в противовес увеличению потока, вызванного вращением. На ближней стороне рисунка обратный ток течёт от вращающегося плеча через ближнюю сторону обода к нижней щётке. Индуцированное поле B увеличивает поток по эту сторону цепи, в противовес снижению потока, вызванного вращением. Таким образом, обе стороны цепи генерируют ЭДС, препятствующую вращению. Энергия, необходимая для поддержания движения диска в противовес этой реактивной силе, в точности равна вырабатываемой электрической энергии (плюс энергия на компенсацию потерь из-за трения, из-за выделения тепла Джоуля и прочее). Такое поведение является общим для всех генераторов преобразования механической энергии в электрическую.
Хотя закон Фарадея описывает работу любых электрических генераторов, детальный механизм в разных случаях может отличаться. Когда магнит вращается вокруг неподвижного проводника, меняющееся магнитное поле создаёт электрическое поле, как описано в уравнении Максвелла-Фарадея, и это электрическое поле толкает заряды через проводник. Этот случай называется индуцированной ЭДС. С другой стороны, когда магнит неподвижен, а проводник вращается, на движущиеся заряды воздействует магнитная сила (как описывается законом Лоренца), и эта магнитная сила толкает заряды через проводник. Этот случай называется двигательной ЭДС.
Электродвигатель
Электрический генератор может работать в «обратном направлении» и становиться двигателем. Рассмотрим, например, диск Фарадея. Предположим, постоянный ток течёт через проводящее радиальное плечо от какого-либо напряжения. Тогда по закону силы Лоренца на этот движущийся заряд воздействует сила в магнитном поле B, которая будет вращать диск в направлении, определённым правилом левой руки. При отсутствии эффектов, вызывающих диссипативные потери, таких как трение или тепло Джоуля, диск будет вращаться с такой скоростью, чтобы d ΦB / dt было равно напряжению, вызывающему ток.