
- •1 Основные понятия
- •1.1 Первичные источники
- •1.2 Вторичные источники
- •1.2.1 Структурная схема электроснабжения предприятия электросвязи
- •1.2.2 Структурная схема электроснабжения предприятия радиосвязи
- •1.3 Устройства бесперебойного электропитания
- •Убп постоянного тока
- •1.3.2 Убп переменного тока
- •1.4 Структурные схемы выпрямительных устройств
- •1.5 Показатели вторичных источников
- •1.5.1 Коэффициент полезного действия
- •1.5.2 Коэффициент мощности
- •1.5.3 Коэффициент пульсаций
- •1.5.4 Внешняя характеристика
- •1.5.5 Масса и объём
- •1.6 Примеры задач с решениями
- •Магнитные цепи
- •2.1 Магнитные материалы
- •50Нп толщиной 0,05 мм (50 микрон)
- •2.2 Потери в магнитопроводе
- •2.3 Основная формула трансформаторной эдс
- •2.4 Управление индуктивностью
- •2.5 Трансформаторы
- •2.5.1 Основные понятия и классификация трансформаторов
- •2.5.2 Режимы работы и схема замещения трансформатора
- •2.5.3 Внешняя характеристика трансформатора
- •2.5.4 Коэффициент полезного действия трансформатора
- •2.5.5 Мощность трансформатора
- •2.5.6 Трёхфазные трансформаторы
- •2.5.7 Импульсные трансформаторы
- •2.6 Примеры задач с решениями
- •3 Выпрямители и фильтры
- •3.1 Преобразование переменного тока в постоянный
- •3.2 Неуправляемый вентиль и его характеристики
- •3.3 Схемы выпрямления
- •3.4 Расчётные соотношения для неуправляемых выпрямителей
- •3.5 Сглаживающие фильтры
- •3.5.1 Пассивные сглаживающие фильтры
- •3.5.2 Активные сглаживающие фильтры
- •Индуктивный характер нагрузки
- •3.7 Ёмкостный характер нагрузки
- •Управляемые выпрямители
- •Примеры задач по выпрямителям с решениями
- •Определите среднее значение напряжения (постоянную составляющую) u0.
- •Пример 3.9.5
- •Из линейности внешней характеристики выпрямителя следует:
- •3.10 Примеры задач по сглаживающим фильтрам с решениями
- •Пример 3.10.4
- •Определите уровни токов и напряжений (расчёт по постоянному току рис. 3.62б и в момент коммутации). Изобразите ожидаемые диаграммы переходных процессов при периодической коммутации ключа к.
- •Пример 3.10.5 Исходные данные: Схемы пассивного (а) и активного (б) сглаживающих фильтров приведены на рисунке 3.64.
- •4 Стабилизаторы
- •4.1 Основные определения
- •4.2 Параметрические стабилизаторы
- •4.2.1 Параметрические стабилизаторы напряжения постоянного тока
- •4.2.2 Параметрические стабилизаторы напряжения переменного тока
- •Компенсационные стабилизаторы напряжения постоянного тока
- •Импульсные стабилизаторы
- •4.6 Примеры задач по стабилизаторам с решениями Пример 4.6.1
- •Падение напряжения на балластном резисторе:
- •Пример 4.6.7 Исходные данные: Для схемы мостового стабилизатора напряжения параметры используемых стабилитронов приведены на рисунке 4.34.
- •Определите коэффициент стабилизации по напряжению.
- •Пример 4.6.12
- •5 Преобразователи
- •5.1 Основные определения
- •5.2 Однотактные преобразователи
- •5.3 Двухтактные преобразователи
- •5.4 Резонансные инверторы
- •5.5 Примеры задач по преобразователям с решениями
- •6 Корректор коэффициента мощности
- •6.1 Основные понятия
- •6.2 Разновидности ккм
- •7. Практические схемы выпрямительных устройств
- •7.1 Выпрямитель с бестрансформаторным входом вбв 24/3
- •7.2 Источник бесперебойного питания ибп5-48/36
- •7.2.1 Общая характеристика
- •7.2.2 Схема выпрямительного модуля бп-500/48
- •7.3 Установка электропитания prs
- •7.3.1 Общая характеристика системы
- •7.3.2 Структурная схема выпрямительного модуля smps
- •8 Список литературы
1.5.4 Внешняя характеристика
Это зависимость напряжения на нагрузке от тока нагрузки : U0 = f ( I0 ). При этом, ВИП представляется генератором постоянного напряжения U0ХХ (холостого хода) с внутренним сопротивлением RВЫХ, как показано на рис. 1.23а. Его внешняя характеристика показана на рис 1.23б и имеет падающий характер.
Очевидно, что U0 = U0ХХ – I0 Rвых. По внешней характеристике можно определить выходное сопротивление источника (рис.1.23б) :
,
это сопротивление отрицательное (источник энергии!) и, обычно, нелинейное, поэтому его находят только в рабочей точке.
Рисунок 1.23 – Представление ВИП и его внешняя характеристика
Выходное
сопротивление источника существенно
влияет на работу РЭА. Если от одного
источника питается несколько нагрузок
(широко распространенная практика), то
зависимость выходного напряжения от
тока источника () приводит к связи между несколькими
нагрузками. Это положение иллюстрируется
схемой рис.1.24.
Рисунок 1.24 – Связь нагрузок через выходное сопротивление источника
Изменение
тока одной из нагрузок I01
или I02
приводит к изменению U0
и Rвых
играет роль сопротивления отрицательной
обратной связи по току. Постановка на
выходе конденсатора C
большой ёмкости такой величины, что
,
где
- частота изменения тока нагрузки,
устраняет эту связь по переменному
току. При импульсных токах нагрузки это
условие надо выполнить для широкого
спектра частот, но идеальных конденсаторов
нет. Электролитический конденсатор
имеет схему замещения, показанную на
рис. 1.25. Здесь Rc
– сопротивление потерь, зависящее от
тангенса угла потерь используемого
диэлектрика, L
– индуктивность выводов. Зависимость
Z
от частоты носит явно резонансный
характер. Частота резонанса зависит от
типа, конструкции конденсатора и меняется
в широких пределах от 2 Ггц для керамических
до десятков килогерц для электролитических
конденсаторов.
Рисунок 1.25 – Схема замещения электролитического конденсатора (а) и
зависимость его полного сопротивления от частоты (б)
Например, для конденсатора типа К 50-33 с напряжением 63В, ёмкостью Сном=4700мкФ, модуль полного сопротивления лежит в пределах Z = 0,03… 0,1 Ом при частотах 10кГц …1МГц.[13 ]. Теоретическое значение сопротивления равно:
То есть, реальное сопротивление на порядок превышает теоретическое значение сопротивления Хc . Поэтому параллельно электролитическому конденсатору ставят плёночный или керамический конденсатор малой ёмкости.
1.5.5 Масса и объём
Энергетические устройства одинакового назначения сравнивают между собой по удельным массо-объёмным показателям с размерностью: Вт/дм3 и Вт/кг (иногда кг/Вт).
Габариты любого электротехнического устройства определяются либо требуемой поверхностью теплопровода (VT), либо конструктивным объёмом, необходимым для размещения деталей (VK).
Использование интегральной и гибридно-плёночной технологии изготовления диодов, транзисторов, резисторов, дросселей и прочее, повышает их коэффициент загрузки, т.е. увеличивается плотность тока (j - А/мм2) и частота преобразования, что приводит к уменьшению массы и объёма конструкции (VK). С другой стороны повышение коэффициента загрузки приводит к увеличению потерь, следовательно, и требуемый «тепловой» объём возрастает(VТ).
Это положение иллюстрируется графиком рис.1.26, где по оси абсцисс отложен интегральный параметр – частота f, плотность тока j, индукция В.
Рисунок 1.26 – Зависимость объёма ВИП от частоты, плотности тока и
индукции
Кажется, что увеличивая бесконечно частоту, можно снизить объём конструкции, но при этом возрастает минимальный тепловой объём (мощный транзистор ставится на радиатор!). Поэтому нет смысла уходить за точку оптимума. Попадание в эту точку на этапе проектирования системы может быть только случайным, поскольку задача многопараметрическая. Любое отклонение от неё в ту или другую сторону является основанием для оптимизации режимов работы с целью повышения удельной мощности и КПД вторичного источника.
Современные выпрямители (ВБВ - импульсные) работают в районе точки оптимума и характеризуются удельной мощностью 400…600 Вт/дм3 при частоте преобразования 50…100 кГц. Классические выпрямители, работающие на промышленной частоте 50 Гц, имеют удельную мощность 7…10 Вт/дм3 . Примерно во столько же раз отличается и стоимость импульсных и классических выпрямительных устройств, но широким спросом пользуются именно импульсные, в силу своих высоких эксплуатационных показателей.