
- •For Web Developers
- •Contents at a Glance
- •Table of Contents
- •List of Figures
- •List of Tables
- •Foreword
- •Why Does Microsoft Care About IPv6?
- •Preface
- •Acknowledgments
- •Introduction
- •Who Should Read This Book
- •What You Should Know Before Reading This Book
- •Organization of This Book
- •Appendices of This Book
- •About the Companion CD-ROM
- •System Requirements
- •IPv6 Protocol and Windows Product Versions
- •A Special Note to Teachers and Instructors
- •Disclaimers and Support
- •Technical Support
- •Limitations of IPv4
- •Consequences of the Limited IPv4 Address Space
- •Features of IPv6
- •New Header Format
- •Large Address Space
- •Stateless and Stateful Address Configuration
- •IPsec Header Support Required
- •Better Support for Prioritized Delivery
- •New Protocol for Neighboring Node Interaction
- •Extensibility
- •Comparison of IPv4 and IPv6
- •IPv6 Terminology
- •The Case for IPv6 Deployment
- •IPv6 Solves the Address Depletion Problem
- •IPv6 Solves the Disjoint Address Space Problem
- •IPv6 Solves the International Address Allocation Problem
- •IPv6 Restores End-to-End Communication
- •IPv6 Uses Scoped Addresses and Address Selection
- •IPv6 Has More Efficient Forwarding
- •IPv6 Has Support for Security and Mobility
- •Testing for Understanding
- •Architecture of the IPv6 Protocol for Windows Server 2008 and Windows Vista
- •Features of the IPv6 Protocol for Windows Server 2008 and Windows Vista
- •Installed, Enabled, and Preferred by Default
- •Basic IPv6 Stack Support
- •IPv6 Stack Enhancements
- •GUI and Command-Line Configuration
- •Integrated IPsec Support
- •Windows Firewall Support
- •Temporary Addresses
- •Random Interface IDs
- •DNS Support
- •Source and Destination Address Selection
- •Support for ipv6-literal.net Names
- •LLMNR
- •PNRP
- •Literal IPv6 Addresses in URLs
- •Static Routing
- •IPv6 over PPP
- •DHCPv6
- •ISATAP
- •Teredo
- •PortProxy
- •Application Support
- •Application Programming Interfaces
- •Windows Sockets
- •Winsock Kernel
- •Remote Procedure Call
- •IP Helper
- •Win32 Internet Extensions
- •Windows Filtering Platform
- •Manually Configuring the IPv6 Protocol
- •Configuring IPv6 Through the Properties of Internet Protocol Version 6 (TCP/IPv6)
- •Configuring IPv6 with the Netsh.exe Tool
- •Disabling IPv6
- •IPv6-Enabled Tools
- •Ipconfig
- •Route
- •Ping
- •Tracert
- •Pathping
- •Netstat
- •Displaying IPv6 Configuration with Netsh
- •Netsh interface ipv6 show interface
- •Netsh interface ipv6 show address
- •Netsh interface ipv6 show route
- •Netsh interface ipv6 show neighbors
- •Netsh interface ipv6 show destinationcache
- •References
- •Testing for Understanding
- •The IPv6 Address Space
- •IPv6 Address Syntax
- •Compressing Zeros
- •IPv6 Prefixes
- •Types of IPv6 Addresses
- •Unicast IPv6 Addresses
- •Global Unicast Addresses
- •Topologies Within Global Addresses
- •Local-Use Unicast Addresses
- •Unique Local Addresses
- •Special IPv6 Addresses
- •Transition Addresses
- •Multicast IPv6 Addresses
- •Solicited-Node Address
- •Mapping IPv6 Multicast Addresses to Ethernet Addresses
- •Anycast IPv6 Addresses
- •Subnet-Router Anycast Address
- •IPv6 Addresses for a Host
- •IPv6 Addresses for a Router
- •Subnetting the IPv6 Address Space
- •Step 1: Determining the Number of Subnetting Bits
- •Step 2: Enumerating Subnetted Address Prefixes
- •IPv6 Interface Identifiers
- •EUI-64 Address-Based Interface Identifiers
- •Temporary Address Interface Identifiers
- •IPv4 Addresses and IPv6 Equivalents
- •References
- •Testing for Understanding
- •Structure of an IPv6 Packet
- •IPv4 Header
- •IPv6 Header
- •Values of the Next Header Field
- •Comparing the IPv4 and IPv6 Headers
- •IPv6 Extension Headers
- •Extension Headers Order
- •Hop-by-Hop Options Header
- •Destination Options Header
- •Routing Header
- •Fragment Header
- •Authentication Header
- •Encapsulating Security Payload Header and Trailer
- •Upper-Layer Checksums
- •References
- •Testing for Understanding
- •ICMPv6 Overview
- •Types of ICMPv6 Messages
- •ICMPv6 Header
- •ICMPv6 Error Messages
- •Destination Unreachable
- •Packet Too Big
- •Time Exceeded
- •Parameter Problem
- •ICMPv6 Informational Messages
- •Echo Request
- •Echo Reply
- •Comparing ICMPv4 and ICMPv6 Messages
- •Path MTU Discovery
- •Changes in PMTU
- •References
- •Testing for Understanding
- •Neighbor Discovery Overview
- •Neighbor Discovery Message Format
- •Neighbor Discovery Options
- •Source and Target Link-Layer Address Options
- •Prefix Information Option
- •Redirected Header Option
- •MTU Option
- •Route Information Option
- •Neighbor Discovery Messages
- •Router Solicitation
- •Router Advertisement
- •Neighbor Solicitation
- •Neighbor Advertisement
- •Redirect
- •Summary of Neighbor Discovery Messages and Options
- •Neighbor Discovery Processes
- •Conceptual Host Data Structures
- •Address Resolution
- •Neighbor Unreachability Detection
- •Duplicate Address Detection
- •Router Discovery
- •Redirect Function
- •Host Sending Algorithm
- •References
- •Testing for Understanding
- •MLD and MLDv2 Overview
- •IPv6 Multicast Overview
- •Host Support for Multicast
- •Router Support for Multicast
- •MLD Packet Structure
- •MLD Messages
- •Multicast Listener Query
- •Multicast Listener Report
- •Multicast Listener Done
- •Summary of MLD
- •MLDv2 Packet Structure
- •MLDv2 Messages
- •The Modified Multicast Listener Query
- •MLDv2 Multicast Listener Report
- •Summary of MLDv2
- •MLD and MLDv2 Support in Windows Server 2008 and Windows Vista
- •References
- •Testing for Understanding
- •Address Autoconfiguration Overview
- •Types of Autoconfiguration
- •Autoconfigured Address States
- •Autoconfiguration Process
- •DHCPv6
- •DHCPv6 Messages
- •DHCPv6 Stateful Message Exchange
- •DHCPv6 Stateless Message Exchange
- •DHCPv6 Support in Windows
- •IPv6 Protocol for Windows Server 2008 and Windows Vista Autoconfiguration Specifics
- •Autoconfigured Addresses for the IPv6 Protocol for Windows Server 2008 and Windows Vista
- •References
- •Testing for Understanding
- •Name Resolution for IPv6
- •DNS Enhancements for IPv6
- •LLMNR
- •Source and Destination Address Selection
- •Source Address Selection Algorithm
- •Destination Address Selection Algorithm
- •Example of Using Address Selection
- •Hosts File
- •DNS Resolver
- •DNS Server Service
- •DNS Dynamic Update
- •Source and Destination Address Selection
- •LLMNR Support
- •Support for ipv6-literal.net Names
- •Peer Name Resolution Protocol
- •References
- •Testing for Understanding
- •Routing in IPv6
- •IPv6 Routing Table Entry Types
- •Route Determination Process
- •Strong and Weak Host Behaviors
- •Example IPv6 Routing Table for Windows Server 2008 and Windows Vista
- •End-to-End IPv6 Delivery Process
- •IPv6 on the Sending Host
- •IPv6 on the Router
- •IPv6 on the Destination Host
- •IPv6 Routing Protocols
- •Overview of Dynamic Routing
- •Routing Protocol Technologies
- •Routing Protocols for IPv6
- •Static Routing with the IPv6 Protocol for Windows Server 2008 and Windows Vista
- •Configuring Static Routing with Netsh
- •Configuring Static Routing with Routing and Remote Access
- •Dead Gateway Detection
- •References
- •Testing for Understanding
- •Overview
- •Node Types
- •IPv6 Transition Addresses
- •Transition Mechanisms
- •Using Both IPv4 and IPv6
- •IPv6-over-IPv4 Tunneling
- •DNS Infrastructure
- •Tunneling Configurations
- •Router-to-Router
- •Host-to-Router and Router-to-Host
- •Host-to-Host
- •Types of Tunnels
- •PortProxy
- •References
- •Testing for Understanding
- •ISATAP Overview
- •ISATAP Tunneling
- •ISATAP Tunneling Example
- •ISATAP Components
- •Router Discovery for ISATAP Hosts
- •Resolving the Name “ISATAP”
- •Using the netsh interface isatap set router Command
- •ISATAP Addressing Example
- •ISATAP Routing
- •ISATAP Communication Examples
- •ISATAP Host to ISATAP Host
- •ISATAP Host to IPv6 Host
- •Configuring an ISATAP Router
- •References
- •Testing for Understanding
- •6to4 Overview
- •6to4 Tunneling
- •6to4 Tunneling Example
- •6to4 Components
- •6to4 Addressing Example
- •6to4 Routing
- •6to4 Support in Windows Server 2008 and Windows Vista
- •6to4 Host/Router Support
- •6to4 Router Support
- •6to4 Communication Examples
- •6to4 Host to 6to4 Host/Router
- •6to4 Host to IPv6 Host
- •Example of Using ISATAP and 6to4 Together
- •Part 1: From ISATAP Host A to 6to4 Router A
- •Part 2: From 6to4 Router A to 6to4 Router B
- •Part 3: From 6to4 Router B to ISATAP Host B
- •References
- •Testing for Understanding
- •Introduction to Teredo
- •Benefits of Using Teredo
- •Teredo Support in Microsoft Windows
- •Teredo and Protection from Unsolicited Incoming IPv6 Traffic
- •Network Address Translators (NATs)
- •Teredo Components
- •Teredo Client
- •Teredo Server
- •Teredo Relay
- •Teredo Host-Specific Relay
- •The Teredo Client and Host-Specific Relay in Windows
- •Teredo Addresses
- •Teredo Packet Formats
- •Teredo Data Packet Format
- •Teredo Bubble Packets
- •Teredo Indicators
- •Teredo Routing
- •Routing for the Teredo Client in Windows
- •Teredo Processes
- •Initial Configuration for Teredo Clients
- •Maintaining the NAT Mapping
- •Initial Communication Between Teredo Clients on the Same Link
- •Initial Communication Between Teredo Clients in Different Sites
- •Initial Communication from a Teredo Client to a Teredo Host-Specific Relay
- •Initial Communication from a Teredo Host-Specific Relay to a Teredo Client
- •Initial Communication from a Teredo Client to an IPv6-Only Host
- •Initial Communication from an IPv6-Only Host to a Teredo Client
- •References
- •Testing for Understanding
- •IPv6 Security Considerations
- •Authorization for Automatically Assigned Addresses and Configurations
- •Recommendations
- •Protection of IPv6 Packets
- •Recommendations
- •Host Protection from Scanning and Attacks
- •Address Scanning
- •Port Scanning
- •Recommendations
- •Control of What Traffic Is Exchanged with the Internet
- •Recommendations
- •Summary
- •References
- •Testing for Understanding
- •Introduction
- •Planning for IPv6 Deployment
- •Platform Support for IPv6
- •Application Support for IPv6
- •Unicast IPv6 Addressing
- •Tunnel-Based IPv6 Connectivity
- •Native IPv6 Connectivity
- •Name Resolution with DNS
- •DHCPv6
- •Host-Based Security and IPv6 Traffic
- •Prioritized Delivery for IPv6 Traffic
- •Deploying IPv6
- •Set Up an IPv6 Test Network
- •Begin Application Migration
- •Configure DNS Infrastructure to Support AAAA Records and Dynamic Updates
- •Deploy a Tunneled IPv6 Infrastructure with ISATAP
- •Upgrade IPv4-Only Hosts to IPv6/IPv4 Hosts
- •Begin Deploying a Native IPv6 Infrastructure
- •Connect Portions of Your Intranet over the IPv4 Internet
- •Connect Portions of Your Intranet over the IPv6 Internet
- •Summary
- •References
- •Testing for Understanding
- •Basic Structure of IPv6 Packets
- •LAN Media
- •Ethernet: Ethernet II
- •Ethernet: IEEE 802.3 SNAP
- •Token Ring: IEEE 802.5 SNAP
- •FDDI
- •IEEE 802.11
- •WAN Media
- •Frame Relay
- •ATM: Null Encapsulation
- •ATM: SNAP Encapsulation
- •IPv6 over IPv4
- •References
- •Added Constants
- •Address Data Structures
- •in6_addr
- •sockaddr_in6
- •sockaddr_storage
- •Wildcard Addresses
- •in6addr_loopback and IN6ADDR_LOOPBACK_INIT
- •Core Sockets Functions
- •Name-to-Address Translation
- •Address-to-Name Translation
- •Using getaddrinfo
- •Address Conversion Functions
- •Socket Options
- •New Macros
- •References
- •General
- •Addressing
- •Applications
- •Sockets API
- •Transport Layer
- •Internet Layer
- •Network Layer Security
- •Link Layer
- •Routing
- •IPv6 Transition Technologies
- •Chapter 1: Introduction to IPv6
- •Chapter 2: IPv6 Protocol for Windows Server 2008 and Windows Vista
- •Chapter 3: IPv6 Addressing
- •Chapter 4: The IPv6 Header
- •Chapter 5: ICMPv6
- •Chapter 6: Neighbor Discovery
- •Chapter 8: Address Autoconfiguration
- •Chapter 9: IPv6 and Name Resolution
- •Chapter 10: IPv6 Routing
- •Chapter 11: IPv6 Transition Technologies
- •Chapter 12: ISATAP
- •Chapter 13: 6to4
- •Chapter 14: Teredo
- •Chapter 15: IPv6 Security Considerations
- •Chapter 16: Deploying IPv6
- •IPv6 Test Lab Setup
- •CLIENT1
- •ROUTER1
- •ROUTER2
- •CLIENT2
- •IPv6 Test Lab Tasks
- •Performing Link-Local Pings
- •Enabling Native IPv6 Connectivity on Subnet 1
- •Configuring ISATAP
- •Configuring Native IPv6 Connectivity for All Subnets
- •Using Name Resolution
- •Configuring an IPv6-Only Routing Infrastructure
- •Overview
- •Mobile IPv6 Components
- •Mobile IPv6 Transport Layer Transparency
- •Mobile IPv6 Messages and Options
- •Mobility Header and Messages
- •Type 2 Routing Header
- •Home Address Option for the Destination Options Header
- •ICMPv6 Messages for Mobile IPv6
- •Modifications to Neighbor Discovery Messages and Options
- •Mobile IPv6 Data Structures
- •Binding Cache
- •Binding Update List
- •Home Agents List
- •Correspondent Registration
- •Return Routability Procedure
- •Detecting Correspondent Nodes That Are Not Mobile IPv6–Capable
- •Mobile IPv6 Message Exchanges
- •Data Between a Mobile Node and a Correspondent Node
- •Binding Maintenance
- •Home Agent Discovery
- •Mobile Prefix Discovery
- •Mobile IPv6 Processes
- •Attaching to the Home Link
- •Moving from the Home Link to a Foreign Link
- •Moving to a New Foreign Link
- •Returning Home
- •Mobile IPv6 Host Sending Algorithm
- •Mobile IPv6 Host Receiving Algorithm
- •References
- •Glossary
- •Index
- •About the Author
- •System Requirements

460 Understanding IPv6, Second Edition
ICMPv6 Messages for Mobile IPv6
The mobile node uses the following ICMPv6 messages for dynamic home agent address and home subnet prefix discovery:
■Home Agent Address Discovery Request
■Home Agent Address Discovery Reply
■Mobile Prefix Solicitation
■Mobile Prefix Advertisement
Dynamic home agent address discovery is a process by which the mobile node dynamically discovers the global address of a home agent on the home link. This process is needed only if the mobile node is not already configured with the address of its home agent or if the current home agent becomes unavailable.
Home subnet prefix discovery is the process by which a mobile node dynamically discovers the address prefix of its home link. This process is needed only when a mobile node’s home address is about to enter the invalid state.
Home Agent Address Discovery Request
The mobile node uses the ICMPv6 Home Agent Address Discovery Request message to begin dynamic home agent address discovery. The ICMPv6 Home Agent Address Discovery Request message is sent to the Mobile IPv6 Home-Agents anycast address that is described in RFC 2526. The Mobile IPv6 Home-Agents anycast is composed of the 64-bit home subnet prefix and the interface ID of ::FEFF:FFFF:FFFF:FFFE. All home agents are automatically configured with this anycast address. The home agent that is topologically closest to the mobile node receives the request message.
Figure F-5 shows the structure of the ICMPv6 Home Agent Address Discovery Request message.
Type = 150
Code = 0
Checksum
Identifier
Reserved
Figure F-5 The structure of ICMPv6 Home Agent Address Discovery Request message
In the Home Agent Address Discovery Request message, the Type field is set to 150 and the Code field is set to 0. Following the Checksum field is a 16-bit Identifier field. The value of the Identifier field is chosen by the sending node, and it is copied to the Identifier field of the Home Agent Address Discovery Reply message to match a reply with its request. Following the Identifier field is a 16-bit Reserved field that is set to 0 by the sender.

Appendix F Mobile IPv6 |
461 |
The Home Agent Address Discovery Request message is sent with the source address in the IPv6 header set to the mobile node’s care-of address.
Home Agent Address Discovery Reply
The home agent uses the ICMPv6 Home Agent Address Discovery Reply message to complete the dynamic home agent address discovery process by informing the mobile node of the addresses of the home agents on the mobile node’s home link.
Figure F-6 shows the structure of the ICMPv6 Home Agent Address Discovery Reply message.
Type = 151
Code = 0
Checksum
Identifier
Reserved
Home Agent Addresses
• • •
Figure F-6 The structure of the ICMPv6 Home Agent Address Discovery Reply message
In the Home Agent Address Discovery Reply message, the Type field is set to 151 and the Code field is set to 0. Following the Checksum field is a 16-bit Identifier field. The value of the Identifier field is set to the same value as the Identifier field of the received Home Agent Address Discovery Request message. Following the Identifier field is a 16-bit Reserved field that is set to 0 by the sender, and one or more 128-bit Home Agent Address fields. The Home Agent Address fields contain the global addresses of home agents on the home link in preference order (highest preference first).
The Home Agent Address Discovery Reply message is sent with the source address in the IPv6 header set to the global address of the answering home agent, and with the destination address set to the mobile node’s care-of address. A Type 2 Routing extension header is not included.
Mobile Prefix Solicitation
A mobile node uses the ICMPv6 Mobile Prefix Solicitation message to obtain its home subnet prefix while it is away from home. The response to the ICMPv6 Mobile Prefix Solicitation message is an ICMPv6 Mobile Prefix Advertisement message from the home agent, which contains the home subnet prefix and other configuration information by which the mobile node can update or refresh its home address.
Figure F-7 shows the structure of the ICMPv6 Mobile Prefix Solicitation message.
The Identifier field is set by the mobile node and used to match a sent Mobile Prefix Solicitation message with its corresponding Mobile Prefix Advertisement message.

462 Understanding IPv6, Second Edition
Type = 152
Code = 0
Checksum
Identifier
Reserved
Figure F-7 The structure of the ICMPv6 Mobile Prefix Solicitation message
Mobile Prefix Advertisement
The home agent uses the ICMPv6 Mobile Prefix Advertisement message to advertise the home subnet prefix and other configuration options to mobile nodes that are away from home, either unsolicited or in response to a received ICMPv6 Mobile Prefix Solicitation message
Figure F-8 shows the structure of the ICMPv6 Mobile Prefix Advertisement message.
Type |
= 153 |
Code = 0
Checksum
Identifier
Managed Address Configuration
Other Stateful Configuration
Reserved |
Options |
• • • |
Figure F-8 The structure of the ICMPv6 Mobile Prefix Advertisement message
The Identifier field is set to the value of the Identifier field of a received Mobile Prefix Solicitation message. The Managed Address Configuration, Other Stateful Configuration, and Options fields are the same as the corresponding fields of the Router Advertisement message as defined in RFC 4861, except that RFC 3775 defines the use of the Mobile IPv6–modified Prefix Information option, described in the next section.
Modifications to Neighbor Discovery Messages and Options
Mobile IPv6 defines the following changes to Neighbor Discovery (ND) messages and options:
■Modified Router Advertisement message
■Modified Prefix Information option
■New Advertisement Interval option
■New Home Agent Information option

Appendix F Mobile IPv6 |
463 |
Modifications to the Router Advertisement Message
Mobile IPv6 defines an additional flag in the Router Advertisement message to help facilitate home agent discovery by the home agents on a home link. The new flag, known as the Home Agent (H) flag, indicates whether the advertising router is capable of being a home agent. Each of the home agents on the home link sets this flag when it sends its router advertisements, and each home agent receives each router advertisement. Therefore, each home agent can compile the list of possible home agents.
Figure F-9 shows the structure of the modified Router Advertisement message.
Type = 134
Code = 0
Checksum
Current Hop Limit
Managed Address Configuration Flag
Other Stateful Configuration Flag
Home Agent Flag
Default Router Preference
Reserved
Router Lifetime
Reachable Time
Retrans Timer
Options
• • •
Figure F-9 The structure of the modified Router Advertisement message
Additionally, Mobile IPv6 allows a router advertisement to be sent more frequently than every three seconds, as specified in RFC 4861. By sending router advertisements more frequently, mobile nodes can use a newly received router advertisement to detect movement to a foreign link more quickly. Recommended values for the pseudo-periodic router advertisement process for routers that might provide connectivity for mobile IPv6 nodes are a minimum of 0.03 seconds and a maximum of 0.07 seconds.
Modified Prefix Information Option
To indicate the global address of the advertising router, Mobile IPv6 defines an additional flag and a redefined use of the Prefix field in the Prefix Information option.
Figure F-10 shows the structure of the modified Prefix Information option.

464 Understanding IPv6, Second Edition
Type |
|
= 3 |
||
Length |
|
|
= 4 |
|
Prefix Length |
|
|
||
|
|
|||
On-Link Flag |
|
|
||
Autonomous Flag |
|
|
||
|
|
Router Address Flag
Site Prefix Flag
Reserved 1
Valid Lifetime
Preferred Lifetime
Reserved 2
Site Prefix Length
Prefix
Figure F-10 The structure of the modified Prefix Information option
According to RFC 4861, router advertisements are sent from the link-local address. However, the global address for a home agent must be indicated in the router advertisement it sends so that each home agent can compile a list of home agents. Mobile IPv6 defines the Router Address (R) flag in the Prefix Information option. When set to 1, the R flag indicates to the receiver that the Prefix field contains the global address of the advertising router. In the originally defined Prefix field, the high-order bits corresponding to the value of the Prefix Length field are set to the appropriate values for the advertised prefix and the bits beyond the indicated prefix length are set to 0. With this new definition, the Prefix Length field is advertised in the same way, only the Prefix field contains the entire 128-bit global address of the advertising router.
Advertisement Interval Option
The Advertisement Interval option is sent in Router Advertisement messages to specify how often the router sends unsolicited multicast router advertisements. A mobile node that receives a router advertisement with the Advertisement Interval option can use the advertisement interval to detect whether it has moved to another link.
Figure F-11 shows the structure of the Advertisement Interval option.
Type = 7
Length = 1
Reserved
Advertisement Interval
Figure F-11 The structure of the Advertisement Interval option