
- •Методы локальной пользовательской маршрутизации Алгоритм Дейкстры
- •Лекция 4
- •Token Ring и ieee 802.5.
- •Сравнение Token Ring и ieee 802.5
- •Передача маркера
- •Физические соединения
- •Система приоритетов
- •Механизмы управления неисправостями
- •Формат блока данных
- •Протокол udp
- •Назначение полей udp пакета:
- •Протокол tcp
- •Назначение полей tcp пакета:
- •Установление соединения, передача данных и завершение соединения.
- •Механизмы обеспечения достоверности передаваемых данных.
- •Механизм управления потоком данных
- •Лекция 7 Маршрутизация в сетях tcp/ip
- •Алгоритмы маршрутизации
- •Дистанционно-векторный протокол rip.
- •Характеристики протокола rip.
- •Механизмы работы протокола rip.
- •Формат rip-пакета.
- •Лекция 8 Протокол состояния связей ospf
- •Принцип работы
- •Формат пакета ospf.
- •Лекция 9 Протоколы достижимости egp и bgp Протокол egp
- •Egp выполняет три основные функции:
- •Формат заголовка egp-пакета.
- •Протокол bgp
- •Формат заголовка bgp-пакета
- •Сообщения bgp.
- •1. Терминология
- •2. Формат заголовка iPv6
- •3. Ip версия 6 архитектуры адресации
- •4. Модель адресации
- •4.1. Представление записи адресов (текстовое представление адресов)
- •0:0:0:0:0:0:13.1.68.3 0:0:0:0:0:Ffff:129.144.52.38
- •4.2. Представление типа адреса
- •4.3. Уникастные адреса
- •4.3.1. Примеры уникастных адресов
- •4.4. Не специфицированный адрес
- •4.5. Адрес обратной связи
- •4.6. IPv6 адреса с вложенными iPv4 адресами
- •4.7. Nsap адреса
- •4.8. Ipx Адреса
- •4.9. Провайдерские глобальные уникаст-адреса
- •4.10. Локальные уникаст-адреса iPv6
- •4.11. Эникаст-адреса
- •4.11.1. Необходимые эникаст-адреса
- •4.12. Мульткаст-адреса
- •11111111 В начале адреса идентифицирует адрес, как мультикатинг-адрес.
- •4.12.1. Предопределенные мультикаст-адреса
- •4.13. Необходимые адреса узлов
- •5. Заголовки расширения iPv6
- •5.1. Порядок заголовков расширения
- •6. Опции
- •6.1. Опции заголовка Hop-by-Hop (шаг за шагом)
- •7. Маршрутный заголовок
- •8. Заголовок фрагмента
- •9. Заголовок опций места назначения
- •10. Отсутствие следующего заголовка
- •11. О размере пакетов
- •12. Метки потоков
- •13. Приоритет
- •14. О протоколе верхнего уровня 14.1 Контрольные суммы верхнего уровня
- •15. Максимальное время жизни пакета
- •16. Максимальный размер поля данных для протоколов высокого уровня
- •Sctp Материал из Википедии — свободной энциклопедии
- •Многопоточность
- •Достоинства
- •Причины появления
- •Сравнение возможностей протоколов транспортного уровня
- •Архитектура sctp
- •Функционирование sctp
- •Sctp Материал из Wiki.Inattack.Ru.
- •Проблемы tcp
- •Свойства sctp
- •Многодомность
- •Инициация
- •Передача данных
- •Отключение
- •Структура пакета
- •Обработка ошибок
- •Лекция 15 Технологии параллельного программирования. Message Passing Interface (mpi)
- •Mpi. Терминология и обозначения
- •Общие процедуры mpi
- •Прием/передача сообщений между отдельными процессами Прием/передача сообщений с блокировкой
- •Прием/передача сообщений без блокировки
- •Объединение запросов на взаимодействие
- •Совмещенные прием/передача сообщений
- •Коллективные взаимодействия процессов
- •Синхронизация процессов
- •Работа с группами процессов
- •Предопределенные константы Предопределенные константы типа элементов сообщений
Формат блока данных
Сети Token Ring определяют два типа блока данных: блоки маркеров и блоки данных/блоки команд. Оба формата представлены на Рис.6-3.
Маркеры Длина маркера - три байта; он состоит из
ограничителя начала
Ограничитель начала служит для предупреждения каждой станции о прибытии маркера (или блока данных/блока команд). В этом поле имеются сигналы, которые отличают этот байт от остальной части блока путем нарушения схемы кодирования, использованной в других частях блока.
байта управления доступом
Байт управления доступом содержит поля приоритета и резервирования, а также бит маркера (используемый для дифференциации маркера и блока данных/блока команд) и бит монитора (используемый активным монитором, чтобы определить, циркулирует какой-либо блок в кольце непрерывно или нет).
ограничителя конца
И наконец, разделитель конца сигнализирует о конце маркера или блока данных/ блока команд. В нем также имеются биты для индикации поврежденного блока,а также блока, являющегося последним в логической последовательности.
Блок данных и блок команд
Блок данных и блок команд могут иметь разные размеры в зависимости от размеров информационного поля. Блоки данных переносят информацию для протоколов высших уровней; блоки команд содержат управляющую информацию, в них отсутствует информация для протоколов высших уровней.
В блоке данных/ блоке команд за байтом управления доступом следует байт управления блоком данных. Байт управления блоком данных указывает, что содержит блок - данные или управляющую информацию. В управляющих блоках этот байт определяет тип управляющей информации.
За байтом управления блоком следуют два адресных поля, которые идентифицируют станции пункта назначения и источника. Для IEEE 802.5 длина адресов равна 6 байтам.
За адресными полями идет поле данных. Длина этого поля ограничена временем удержания маркера кольца, которое определяет максимальное время, в течение которого станция может удерживать маркер.
За полем данных идет поле последовательности проверки блока (FCS). Станция-источник заполняет это поле вычисленной величиной, зависящей от содержания блока данных. Станция назначения повторно вычисляет эту величину, чтобы определить, не был ли блок поврежден при прохождении. Если это так, то блок отбрасывается.
Также, как и маркер, блок данных/ блок команд заканчивается ограничителем конца.
Протоколы транспортного уровня TCP и UDP.
Порты
Протоколы транспортного уровня осуществляют передачу данных между «прикладными процессами», выполняющимися на машинах, подключенных к сети. Данные с сетевого уровня направляются сетевым ПО конкретному процессу получателю и наоборот. На каждом компьютере может выполняться множество процессов, более того, прикладной процесс может иметь несколько точек входа, выступающих в качестве адреса назначения для пакетов данных.
Для однозначной идентификации сетевого приложения, работающего на машине сети, для протоколов транспортного уровня реализована концепция т.н. портов. Порт вместе с IP-адресом однозначно определяют прикладной процесс на любой машине сети. Данный набор идентификационных параметров называется сокетом (socket). Порты задаются 16-битным числом от 0 до 65535.
Существует три типа номеров портов: назначенные (assigned), зарегистрированные (registered) и динамические (dynamic). Назначенные номера портов располагаются в диапазоне 0 – 1023 и полностью контролируются Комиссией по константам Internet. Они применяются для общеизвестных и стандартизированных сетевых служб. Зарегистрированные номера портов от 1024 до 65535 предназначены для регистрации производителями сетевого ПО своих приложений, работающих с данными портами. Динамические номера портов присваиваются сетевым ПО на локальной машине и могут повторяться от станции к станции для различных приложений.