- •А.М. Сажнёв л.Г. Рогулина
- •Методические указания к лабораторным работам
- •Оглавление
- •Лабораторная работа № 1. Ознакомление с программой Electronics
- •Лабораторная работа № 2. Исследование способов включения трехфазных трансформаторов . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
- •Введение
- •Лабораторная работа № 1
- •Осциллограф (Oscilloscope)
- •Измеритель ачх и фчх (Bode Plotter)
- •Функциональный генератор (Function Generator)
- •Двойным щелчком по иконке генератора раскрывается передняя панель (рисунок 1.11).
- •Порядок выполнения работы
- •Результаты работы
- •Лабораторная работа № 2
- •2.4 Описание моделей трехфазного трансформатора
- •2.5 Порядок выполнения работы
- •Результаты работы
- •Контрольные вопросы
- •Лабораторная работа № 3 Исследование неуправляемых выпрямителей
- •3.1 Цель работы
- •3.2 Литература
- •3.3 Пояснения к работе
- •Двухтактная однофазная схема
- •Трехфазная однотактная схема выпрямления
- •Трехфазная двухтактная схема (трехфазный мост, схема Ларионова)
- •Влияние индуктивности рассеяния трансформатора на выпрямленное напряжение в трёхфазной схеме выпрямления с нулевым выводом
- •Внешняя характеристика выпрямителя
- •Влияние магнитной асимметрии на работу выпрямителя
- •3.4 Порядок выполнения работы
- •Лабораторная работа №3.1 Исследование однофазного мостового неуправляемого выпрямителя (Файл s1mostn)
- •Результаты работы
- •Трехфазная однотактная схема выпрямления
- •Трехфазная мостовая схема выпрямления
- •Результаты работы
- •Контрольные вопросы
- •Лабораторная работа №4 Исследование пассивных (lr, rc, lc) сглаживающих фильтров
- •Цель работы
- •Литература
- •4.3 Пояснения к работе
- •4.4 Порядок выполнения работы
- •Исследование lr фильтра в установившемся режиме
- •Включите схему клавишей в правом верхнем углу экрана.
- •Исследование lr фильтра в переходных режимах
- •Измерение ачх и фчх
- •Результаты работы
- •Контрольные вопросы
- •Лабораторная работа №4.2
- •Исследование rc фильтра в установившемся режиме
- •1 Установите ключ к1 в нижнее положение (клавишей 1);
- •В соответствии со своим вариантом (номером бригады) выпишите исходные данные из таблицы 4.4.
- •Исследование rc фильтра в переходных режимах
- •1 Изучение переходных процессов в фильтре при воздействии со стороны сети.
- •Измерение ачх и фчх
- •Результаты работы
- •Ключ к1 управляется клавишей “1” Ключ к2 – клавишей “2” Ключ к3 – клавишей “3”.
- •Исследование lс- фильтра в установившемся режиме Установите ключ к1 в нижнее положение (клавишей 1);
- •1 В соответствии со своим вариантом (номером бригады) выпишите исходные данные из таблицы 4.6.
- •2 Переведите выключатель в правом верхнем углу экрана в положение “1”. Запишите показания вольтметра u02 и амперметра i0.
- •Исследование lс- фильтра в переходных режимах
- •1 Изучение переходных процессов в фильтре при воздействии со стороны сети.
- •Измерение ачх и фчх
- •Результаты работы
- •Контрольные вопросы
- •Лабораторная работа № 5 Исследование активных сглаживающих фильтров
- •5.1 Цель работы
- •Литература
- •5.3 Пояснения к работе
- •Модели активных фильтров
- •Порядок выполнения лабораторной работы в соответствии со своим вариантом (номером бригады) выпишите исходные данные из таблицы 5.1.
- •5.5.1 Исследование активного фильтра по схеме ок (файл saf1фильтр)
- •Напряжения на выходе сглаживающего фильтра (Um2) проводится любым методом, изложенным выше. Выключите макет. Рассчитайте коэффициент сглаживания и ф
- •Результаты занесите в таблицу 5.2.
- •- Ключ к2 в верхнем положении;
- •5.5.2 Исследование активного фильтра по схеме об (файл saf2фильтр)
- •5.6. Результаты работы
- •6.3 Пояснения к работе
- •Рассмотрим принцип действия данного стабилизатора. На рисунке 6.3
- •Порядок выполнения работы
- •В соответствии со своим вариантом (номером бригады) выпишите исходные данные из таблицы 6.1.
- •Откройте окно (рисунок 6.7) Models стабилитрона vd и установите его тип из библиотеки 1n.Установите сопротивление нагрузки, открыв окно Value rh (рисунок 6.8).
- •6.5 Результаты работы
- •6.6 Контрольные вопросы
- •Лабораторная работа № 7
- •Пояснения к работе
- •Описание модели компенсационного стабилизатора
- •7.5 Порядок выполнения работы
- •1 В соответствии со своим вариантом (номером бригады) выпишите исходные данные из таблицы 7.1.
- •Выход через кнопки ok.
- •7.6 Результаты работы
- •7.7 Контрольные вопросы
- •Лабораторная работа № 8
- •8.4 Порядок выполнения работы
- •Лабораторная работа № 8.1 Исследование регулятора напряжения понижающего типа (Файл ирНпониж)
- •Результаты работы
- •Контрольные вопросы
- •Лабораторная работа № 8.2 Исследование регулятора напряжения повышающего типа (Файл ирНповыш)
- •Результаты работы
- •Контрольные вопросы
- •Лабораторная работа № 8.3 Исследование регулятора напряжения инвертирующего типа (Файл ирНинверт)
- •Результаты работы
- •Контрольные вопросы
Трехфазная двухтактная схема (трехфазный мост, схема Ларионова)
Трехфазная двухтактная схема выпрямления приведена на рисунке 3.6. Схема состоит из двух трехфазных однополупериодных схем выпрямления, питающихся от одних и тех же вторичных обмоток трансформатора и, работающих на общую нагрузку.
Рисунок 3.6 – Трехфазная мостовая схема выпрямления
На рисунке 3.7 представлены эпюры токов и напряжений, поясняющие работу схемы.
На интервале [t1;t3] фаза “a” имеет наибольший потенциал по отношению к другим фазам, поэтому диод VD2 работает c фазами b и c (т.к. к аноду прикладывается “+”). В момент времени t3 происходит перекоммутация в катодной группе с VD2 на VD4, т.к. фаза “b” становится более положительной по отношению к другим фазам.
На интервале [t2;t4] фаза “c” имеет более отрицательный потенциал по отношению к другим фазам. Отрицательный потенциал прикладывается к катоду VD5 и он работает с фазами a и b.
– 27 –
Рисунок 3.7 - Временные зависимости для схемы Ларионова
Достоинствами схемы выпрямления являются:
высокое значение коэффициента выпрямления К0 и малый уровень обратного напряжения, что позволяет использовать схему при высоких уровнях напряжения
малое значение коэффициента пульсаций по сравнению с однотактной схемой
возможность использования различных способов соединения
обмоток трансформатора во вторичной цепи
отсутствие одностороннего намагничивания сердечника трансформатора (ток во вторичной цепи трансформатора – двухполярный)
хорошее использование трансформатора (ток во вторичной цепи трансформатора протекает 2/3 периода).
К недостаткам схемы можно отнести:
большое падение напряжения на внутреннем сопротивлении выпрямителя за счет протекания тока через два вентиля, что не позволяет использовать схему при больших токах нагрузки
– 28 –
наличие двух радиаторов для анодной и катодной групп
вентилей
отсутствие общей точки между трансформатором и
нагрузкой.
В связи со своими достоинствами эта схема получила очень широкое распространение.
Основные соотношения для трёхфазной двухтактной схемы:
p = 6 (пульсность);
.
На основании рассмотрения различных схем можно сделать вывод, что для повышения качества выпрямленного напряжения (уменьшения коэффициента пульсаций) необходимо увеличивать пульсность схемы выпрямления. Существуют следующие способы ее повышения:
увеличение фазности питающего напряжения,
увеличение тактности работы системы вентилей,
расщепление фазных напряжений за счет соединения
вторичных обмоток трансформатора «зигзагом».
Очевидно, что при p: К0, аU0U2m.
Влияние индуктивности рассеяния трансформатора на выпрямленное напряжение в трёхфазной схеме выпрямления с нулевым выводом
В момент коммутации t2 (рисунок 3.5) по первому закону коммутации ток VD1 не может скачком измениться до нуля, происходит снижение тока по
экспоненциальному закону. Ток в цепи диода VD2 также нарастает по экспоненте. К нагрузке прикладывается напряжение двух фаз (“a” и “c”), что уменьшает уровень выпрямленного напряжения и увеличивает уровень пульсаций напряжения на нагрузке.
При работе на индуктивную нагрузку происходит аналогичное влияние на форму выпрямленного напряжения угла коммутации, связанного с индуктивностью рассеяния трансформатора. Величина угла коммутации γ
– 29 –
зависит от LSi, поэтому данная схема имеет ограничение по току нагрузки. Схема замещения трехфазной схемы с нулевым выводом представлена на рисунке 3.8.
Рисунок 3.8 – Схема замещения
На рисунке 3.9 изображены зависимости токов и напряжений в цепях, поясняющие процессы в схеме выпрямителя с учетом угла коммутации .
Рисунок 3.9 - Временные зависимости токов и напряжений
Используя метод узловых потенциалов, получим выражение для среднего значения выходного напряжения выпрямителя с учетом влияния индуктивности рассеяния:
,
– 30 –
где - дифференциальное сопротивление диода.
При получении выражения для U0 заштрихованную площадь S1 описывают синусоидальным законом изменения напряжения при 0.5U2m, как показано на рисунке 3.10
Рисунок 3.10 – Аппроксимация напряжения Ud
,
где
Таким образом, увеличение угла коммутации γ приводит к снижению выходного напряжения выпрямителя.