
- •Колебания и волны. Звук. Ультразвук.
- •1.Колебания. Гармонические колебания. Характеристики колебаний: амплитуда, период, частота, циклическая частота, фаза.
- •2.Характеристики волновых процессов: фронт волны, луч, скорость волны, длина волны. Продольные и поперечные волны. Примеры.
- •3.Свободные и вынужденные колебания. Собственная частота колебаний системы. Явление резонанса. Примеры.
- •4. Физические и психофизические характеристики звука: интенсивность, акустическое давление, частота, громкость, высота тона, спектр, тембр. Их взаимное соответствие.
- •5. Особенности восприятия звука. Закон Вебера-Фехнера. Децибельная шкала громкости.
- •6. Звуковые методы исследования в медицине: перкуссия, аускультация. Фонокардиография.
- •7. Ультразвук. Получение и регистрация ультразвука на основе обратного и прямого пьезоэлектрического эффекта.
- •8. Взаимодействие ультразвука различной частоты и интенсивности с веществом. Применение ультразвука в медицине.
- •9. Ультразвуковые методы исследования (узи) в медицинской диагностике.
- •10. Эффект Доплера; его применение для измерения скорости кровотока и в эхокардиографии.
- •11. Ударная волна. Получение и использование ударных волн в медицине.
- •Электромагнитные колебания и волны.
- •12. Электрическое поле. Характеристики электрического поля: напряженность, разность потенциалов. Линии электрического поля.
- •13. Магнитное поле. Характеристики магнитного поля: индукция, поток индукции. Линии магнитного поля.
- •14. Взаимосвязь электрического и магнитного полей. Электромагнитная волна. Скорость электромагнитных волн.
- •15. Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине.
- •18. Глубина проникновения неионизирующих магнитных излучений в биологическую среду. Ее зависимость от частоты. Методы защиты от электромагнитных излучений.
- •19. Физическая природа света. Волновые свойства света. Длина световой волны. Физические и психофизические характеристики света.
- •20. Законы отражения и преломления света. Полное внутреннее отражение. Волоконная оптика, её применение в медицине.
- •21. Оптическая система глаза. Недостатки зрения, методы их коррекции.
- •22. Оптический микроскоп. Ход лучей в микроскопе. Полезное увеличение микроскопа.
- •23. Разрешающая способность и предел разрешения микроскопа. Пути повышения разрешающей способности.
- •24.Специальные методы микроскопии: метод темного поля, поляризационный, люминесцентный микроскоп.
- •Тепловое излучение.
- •25.Тепловое излучение. Распределение энергии в спектре излучения абсолютно черного тела. Квантовая гипотеза Макса Планка.
- •26. Законы теплового излучения.
- •28. Способы преобразования изображений.
- •30. Линейчатый спектр излучения атомов. Его объяснение в теории Нильса Бора.
- •31. Волновые свойства частиц. Гипотеза де-Бройля, её экспериментальное обоснование.
- •32. Электронный микроскоп. Принцип действия, разрешающая способность, применение в медицинских исследованиях.
- •33. Квантово-механическое объяснение структуры атомных и молекулярных спектров.
- •34. Люминесценция. Ее виды. Закон Стокса.
- •35. Применение люминесценции в медико-биологических исследованиях.
- •36. Фотоэлектрический эффект. Уравнение Эйнштейна для внешнего фотоэффекта.
- •37. Свойства лазерного излучения. Их связь с квантовой структурой излучения.
- •38. Принцип работы лазера. Инверсная заселенность энергетических уровней. Возникновение фотонных лавин.
- •39. Применение лазеров в медицине.
- •40. Ядерный магнитный резонанс. Использование ямр в медицине (мрт).
- •41. Физические основы и диагностические возможности позитронно-эмиссионной томографии (пэт).
- •42. Рентгеновское излучение, его спектр. Тормозное и характеристическое излучение, их природа.
- •43. Способы получения рентгеновского излучения: рентгеновская трубка, бетатрон.
- •44. Применение рентгеновского излучения в диагностике. Рентгеноскопия. Рентгенография. Флюорография. Рентгеновская компьютерная томография (ркт).
- •45. Взаимодействие рентгеновского излучения с веществом: фотопоглощение, когерентное рассеяние, комптоновское рассеяние, образование пар. Вероятности этих процессов.
- •46. Радиоактивность. Закон радиоактивного распада. Период полураспада. Единицы активности радиоактивных препаратов.
- •47. Виды радиоактивного распада: α-распад, β-распад. Характеристики радиоактивных излучений.
- •48. Закон ослабления ионизирующих излучений. Коэффициент линейного ослабления. Толщина слоя половинного ослабления.
- •49. Основы биологического действия ионизирующих излучений: ионизация молекул, образование свободных радикалов. Лучевая болезнь.
- •50. Получение и применение радиоактивных препаратов для диагностики и лечения
- •51. Методы регистрации ионизирующих излучений: счетчик Гейгера, сцинтилляционный датчик, ионизационная камера.
- •52. Дозиметрия. Понятие о поглощенной, экспозиционной и эквивалентной дозе и их мощности. Единицы их измерения. Внесистемная единица – рентген.
- •53. Общая характеристика системы кровообращения. Скорость движения крови в сосудах. Ударный объем крови. Работа и мощность сердца.
- •54. Уравнение Пуазейля. Понятие о гидравлическом сопротивлении кровеносных сосудов и способах воздействия на него.
- •55. Ламинарное и турбулентное движение жидкости. Число Рейнольдса.
- •56. Пульсовая волна и скорость ее распространения. Формула Моенса-Кортевега.
- •57. Внутреннее трение в жидкости. Уравнение Ньютона. Вязкость крови. Основные факторы, влияющие на вязкость крови в организме.
- •59. Типы кровеносных сосудов, их функции. Характер движения крови в сосудах различного типа.
- •60. Общая характеристика опорно-двигательного аппарата (ода). Число степеней свободы суставов и ода.
- •61. Особенности работы мышц в сочленениях с костями.
- •62. Виды деформации. Закон Гука. Коэффициент жесткости. Модуль упругости. Особые свойства костных тканей.
- •63. Механика мышечного сокращения. Саркомеры. Взаимодействие актиновых и миозиновых нитей. Строение мышечных волокон.
- •64. Кпд мышечных сокращений.
- •65. Изотонический режим работы мышц. Уравнение Хилла. Изометрический режим. Статическая работа мышц.
- •66. Второй закон механики Ньютона. Его применение для анализа травматизма. Способы увеличения продолжительности удара.
- •67. Строение и модели клеточных мембран.
- •68. Физические свойства биологических мембран.
- •69. Функции клеточной или плазматической мембраны
- •70. Ионный состав цитоплазмы и межклеточной жидкости. Проницаемость клеточной мембраны для различных ионов. Разность потенциалов на мембране клетки.
- •71. Потенциал покоя клетки. Уравнение Гольдмана-Ходжкина-Катца.
- •72. Возбудимость клеток и тканей. Методы возбуждения. Закон «всё или ничего».
- •73. Потенциал действия: графический вид и характеристики, механизмы возникновения и развития.
- •74. Потенциал - зависимые ионные каналы: строение, свойства, функционирование.
- •75. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.
- •76. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.
- •77. Особенности светового и звукового восприятия. Закон Вебера-Фехнера.
- •78. Основные характеристики слухового анализатора. Механизмы слуховой рецепции.
- •79. Основные характеристики зрительного анализатора. Механизмы зрительной рецепции.
75. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.
Безмиелиновые нервные волокна В покое мембрана аксона (осевого цилиндра) поляризована — положительно заряжена снаружи и отрицательно внутри. При потенциале действия полярность изменяется, и наружная поверхность мембраны приобретает отрицательный заряд. Из-за разности потенциалов между возбуждённым и невозбуждёнными сегментами возникают локальные токи, деполяризующие соседний участок мембраны. Теперь этот участок становится возбуждённым и деполяризует следующий участок мембраны.
Такое проведение известно как электротоническое, а проведение ПД — своего рода «эстафета», в которой каждый участок мембраны является сначала раздражаемым, а затем раздражающим. ПД возникает за счёт увеличения проводимости через потенциалозависимые Na+‑каналы, встроенные в аксолемму с плотностью около 110–120 каналов на 1 мкм2.
Появление так называемых рефрактерных каналов (рефрактерное состояние мембраны после прохождения ПД) предупреждает распространение возбуждения в обратном направлении.
Скорость проведения возбуждения по безмиелиновому нервному волокну в основном составляет 0,5–2 м/с и зависит от диаметра волокна: чем больше диаметр, тем выше скорость проведения ПД.
76. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.
Миелиновое нервное волокно состоит из осевого цилиндра (аксона), вокруг которого шванновские клетки образуют миелин за счёт концентрического наслаивания собственной плазматической мембраны. Миелин прерывается через регулярные промежутки (от 0,2 до 2 мм) концентрической щелью шириной около 1 мкм, это узлы, или перехваты Ранвье. Таким образом, межузловые сегменты аксона, расположенные между соседними перехватами Ранвье, содержат миелин — электрический изолятор, не позволяющий проходить через него локальным токам, поэтому ПД возникают только в перехватах Ранвье. Т.е. ПД перемещается вдоль нервного волокна скачками, от одного перехвата Ранвье к другому перехвату (скачкообразное проведение). В силу высокой плотности Na+‑каналов перехваты Ранвье характеризуются высокой возбудимостью, а локальные токи достаточно велики для возбуждения соседнего перехвата.
Локальные токи текут от перехвата к перехвату (через внеклеточную жидкость кнаружи от миелина и через аксоплазму внутри аксона) с минимальными потерями. Скорость проведения ПД в миелиновых волокнах в десятки раз выше, чем в наиболее «быстрых» безмиелиновых аксонах. Энергозатраты нервного волокна на проведение ПД относительно невелики, поскольку возбуждаются только перехваты Ранвье, площадь которых составляет менее 1% общей поверхности мембраны аксона. Поэтому даже после длительных ритмических пачек ПД трансмембранный градиент концентраций ионов практически не изменяется. В физиологических условиях ПД движутся в одном направлении от места раздражения. Нарушение миелинизации нервных волокон приводит к нарушениям проводимости (демиелинизирующие заболевания). При разрушении миелиновой оболочки происходит резкое снижение скорости и надёжности проведения возбуждения по нервам. Наиболее распространённым среди демиелинизирующих заболеваний является множественный склероз, проявляющийся различными параличами и потерей чувствительности.