
- •Лекция 1.
- •1 Производственный и технологический процессы капитального ремонта.
- •2 Виды, методы и системы ремонта автомобилей
- •1 Производственный и технологический процессы капитального ремонта
- •2 Виды, методы и система ремонта автомобилей
- •Лекция 2
- •1 Порядок приема техники в ремонт
- •2 Оформление документации на прием в ремонт
- •1 Порядок приема техники в ремонт
- •2 Оформление документации на прием в ремонт
- •Лекция 3
- •2 Мойка и обезжиривание объектов ремонта
- •Лекция 4
- •1 Разборка автомобилей и их агрегатов
- •2 Организационные формы разборочного процесса.
- •3 Технологический процесс разборки
- •Лекция 5
- •1Сущность процесса дефектации и сортировки деталей
- •2 Характерные дефекты деталей
- •3 Технические условия на дефектацию деталей
- •4 Методы контроля, применяемые для дефектации деталей
- •5 Контроль скрытых дефектов. Дефектоскопия
- •Рентгеновский метод Экспонирование дефекта производится на пленку или экран.
- •Гамма-дефектоскопия. Для гамма - дефектоскопии применяют радиоактивные изотопы кобальта-60, тантала-182, цезия- 137 и др.
- •Лекция 6
- •2 Методы обеспечения точности сборки
- •3 Балансировка деталей и узлов при сборке
- •Лекция 7 тема: сборка агрегатов
- •1 Сборка типовых соединений и передач
- •2 Сборка агрегатов
- •1 Сборка типовых соединений и передач
- •2 Сборка агрегатов
- •Лекция 8
- •2 Обкатка двигателей внутреннего сгорания
- •3 Обкатка агрегатов
- •Лекция 9 тема: классификация способов восстановления
- •1 Значение восстановления деталей
- •2 Классификация способов восстановления и их краткая характеристика
- •1 Значение восстановления деталей
- •2 Классификация способов восстановления и их краткая характеристика
- •Лекция 10 тема: восстановление деталей гальваническими покрытиями
- •1 Основные виды гальванических покрытий
- •2 Прогрессивные методы гальванических покрытий
- •1 Основные виды гальванических покрытий
- •2 Прогрессивные методы гальванических покрытий
- •Лекция11
- •2 Характеристика припоя
- •3 Характеристика флюса
- •Лекция 12
- •1 Общая характеристика сварки и наплавки
- •2 Технологический процесс восстановления деталей сваркой и наплавкой
- •3 Автоматическая электродуговая наплавка под флюсом
- •4 Механизированная сварка и наплавка в среде защитных газов
- •5 Автоматическая вибродуговая наплавка
- •6 Особенности сварки деталей из чугуна и сплавов
- •Лекция 13
- •2 Плазменная наплавка.
- •3 Охрана труда при выполнении сварочных и наплавочных работ
- •Лекция 14
- •1 Газопламенное напыление
- •2 Электродуговое напыление
- •3 Высокочастотное напыление
- •4 Детонационное напыление
- •Лекция 15 тема: ремонт гидрооборудования
- •1 Основные положения
- •2 Типовые износы узлов гидропривода и их ремонт
- •1 Основные положения
- •2 Типовые износы узлов гидропривода и их ремонт
- •Лекция 16
- •1 Высокочастотная закалка
- •2 Основные виды поверхностного упрочнения
- •3 Термомеханическая обработка
- •Лекция 17
- •1 Характеристика синтетических материалов
- •2 Применение эпоксидных составов при восстановлении деталей
- •3 Восстановление размеров деталей нанесением полимеров
- •4 Применение синтетических клеев
- •5 Организация рабочего места и техника безопасности
- •Лекция 18
- •1 Технологический процесс ремонта и восстановления рти
- •2 Изготовление рти
- •3 Ремонт рукавов высокого давления (рвд)
- •Лекция 19
- •2 Классификация деталей
- •3 Исходные данные для разработки технологического процесса восстановления деталей
- •Лекция 20
- •2 Состав ремонтного предприятия
- •3 Технико-экономическое обоснование проектирования (тэо)
- •Библиографический список
Лекция 13
ТЕМА: ЛАЗЕРНАЯ И ПЛАЗМЕННАЯ СВАРКА И НАПЛАВКА
План:
Введение
1 Лазерная сварка и наплавка
2 Плазменная наплавка.
3 Охрана труда при выполнении сварочных и наплавочных работ
Заключение
Введение
Одними из современных способов ремонта и восстановления деталей являются лазерная и плазменная сварка и наплавка. Достоинством этих методов является высокое качество сварки и наплавки.
1 Лазерная сварка и наплавка
Лазерные источники энергии в настоящее время используются во многих отраслях народного хозяйства. При ремонте лазер применяют для сварки и наплавки деталей. Лазерное излучение применяют для приварки дополнительных ремонтных деталей, при восстановлении деталей способом замены их поврежденных частей. При восстановлении изношенных деталей лазерный луч используют как источник тепла для наплавки металлического порошка на поверхность детали.
Применяются два типа установок для лазерной сварки и наплавки: с рубиновым квантовым генератором излучения и с газовым генератором, в котором в качестве рабочего тела используется смесь углекислого газа, азота и гелия.
Установка для лазерной сварки, кроме квантового генератора с источником питания, содержит замкнутую систему охлаждения, оптическую систему фокусировки лазерного луча и систему подачи инертного газа для защиты свариваемых деталей от окисления. Установка для наплавки деталей включает в себя, кроме перечисленных элементов, еще систему подачи в зону наплавки металлического порошка и механизмы вращения детали и перемещения лазерной установки.
Основными достоинствами лазерной сварки и наплавки являются:
высокая мобильность лазерного луча, который может быть направлен в самые труднодоступные участки изделия; очень небольшое тепловложение в обрабатываемое изделие, что практически исключает возможность образования зоны термического влияния.
К числу недостатков следует отнести известную сложность установок для лазерной сварки.
2 Плазменная наплавка.
В качестве источника тепловой энергии при плазменной наплавке используется струя плазмы. Плазма представляет собой частично или полностью ионизированный газ, нагретый до очень высокой температуры и обладающий свойством электропроводности. Плазменную струю получают в специальных устройствах, которые называют плазмотронами или плазменными горелками. Плазмотрон состоит из двух основных частей — катодной и анодной. Катод плазмотрона представляет собой стержень диаметром 6.. .8 мм, изготовленный из лантанированного вольфрама, который через водяную рубашку охлаждается проточной водой. Анодная часть (сопло), изготовленная из меди, также охлаждается водой.
Для того чтобы получить плазменную струю между анодом и катодом, возбуждают электрическую дугу, и в зону ее горения вводят плазмообразующий газ, который, проходя через дуговой промежуток, нагревается до высокой температуры и ионизируется, т. е. распадается на положительно и отрицательно заряженные ионы.
Под действием электромагнитного поля происходит обжатие столба дуги, а благодаря избыточному давлению газа дуга вытягивается в направлении движения струи. Это приводит к резкому увеличению плотности тока и повышению температуры струи. Плазменная струя выходит из канала сопла плазмотрона в виде тонкого шнура с длиной видимой части до 50.. .60 мм.
В качестве плазмообразующего газа применяют аргон, азот, гелий, водород и их смеси. Аргонная плазменная струя имеет наиболее высокую температуру (до 15... ...20 тыс. °С) и сверхзвуковую скорость истечения (до 1000.. .1200 м/с).
Присадочный материал при плазменной наплавке вводится в сварочную ванну в виде порошка или проволоки. Порошковая наплавка производится двумя методами: подачей порошка непосредственно в сварочную ванну и путем вдувания его в плазменную струю.
Высокая концентрация тепловой энергии в плазменной струе, стабильность дугового разряда, возможность раздельного регулирования степени нагрева основного и присадочного материалов обусловливают преимущества применения плазмы при наплавке деталей.
Плазменная наплавка обеспечивает высокое качество наплавленного металла и по своим технико-экономическим показателям не уступает, а в ряде случаев даже превосходит другие способы механизированной наплавки.