Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабор. р. № 11.doc
Скачиваний:
8
Добавлен:
09.04.2015
Размер:
1.1 Mб
Скачать

11.4. Задания

1)  Найти эмпирическую модель класса линейных функций y = a x + b, которая бы наилучшим образом отражала связь (зависимость) между экспериментальными данными x и y, т.е. решить задачу линейной регрессии для функции, заданной таблично (табл. 11.1).

2)  Аппроксимировать (приблизить) экспериментальные данные x и y, представленные в таблице 11.2, полиномом второй степени, т.е. решить задачу полиномиальной регрессии.

3)  Аппроксимировать (приблизить) экспериментальные данные x и y, представленные в таблице 11.2, полиномом шестой степени. Проанализировать полученные результаты.

4)  Решить задачу линейной регрессии для функции, заданной таблично (табл. 11.1), с помощью средств табличного процессора Excel. Оценить величину погрешности аппроксимации.

5) Решить задачу полиномиальной регрессии для функции, заданной таблично (табл. 11.2), с помощью средств табличного процессора Excel. Построить две эмпирические модели на основе полиномов второй и шестой степени.

Таблица 11.1

Исходные экспериментальные данные для заданий 1 и 4

Вариант

Экспериментальные данные (результаты измерений)

1

2

1

x = {1; 4; 7; 10; 13; 16; 19; 22; 25; 28; 31}

y = {13,5; 11,57; 11,2; 8,56; 8,79; 6,47; 6; 4,11; 3,98; 2; 0,33}

2

x = {3; 5; 7; 9; 11; 13; 15; 17; 19; 21; 23}

y = {10,2; 11,49; 13,2; 18,1; 19; 22,17; 22; 26,81; 28; 32,6; 33,2}

3

x = {0; 1,5; 3; 4,5; 6; 7,5; 9; 10,5; 12; 13,5; 15}

y = {1,4; 3,25; 10; 8,07; 13,27; 12; 16,39; 17,8; 22,79; 26,91; 25,3}

4

x = {2,5; 5; 7,5; 10; 12,5; 15; 17,5; 20; 22,5; 25; 27,5; 30}

y = {21,4; 22,28; 15; 14,91; 13,1; 9; 9,95; 6,81; 2,3; 2,75; 0,47; 2}

5

x = {7; 7,4; 7,8; 8,2; 8,6; 9; 9,4; 9,8; 10,2; 10,6}

y = {19,3; 15,74; 15; 11,69; 11,81; 9,1; 8,57; 5,25; 4,79; 3}

Окончание табл. 11.1

1

2

6

x = {4,2; 5,4; 6,6; 7,8; 9; 10,2; 11,4; 12,6; 13,8; 15; 16,2}

y = {10,23; 12,5; 18,29; 24; 25,57; 27,4; 34,61; 39; 41,6; 42,78; 49,52}

7

x = {0,6; 1,2; 1,8; 2,4; 3; 3,6; 4,2; 4,8; 5,4; 6; 6,6; 7,2}

y = {7,6; 7,39; 6,05; 5,2; 4,95; 3,74; 3,77; 2,16; 2,07; 1; 1,19; 0,48}

8

x = {7,1; 7,4; 7,7; 8; 8,3; 8,6; 8,9; 9,2; 9,5; 9,8; 10,1}

y = {6,15; 7,09; 7,11; 8; 8,82; 9,3; 11,14; 11; 12,15; 12,04; 13}

9

x = {3,3; 3,8; 4,3; 4,8; 5,3; 5,8; 6,3; 6,8; 7,3; 7,8; 8,3; 8,8}

y = {1,25; 6; 15,46; 15,5; 33,31; 39; 55,11; 58,16; 70,81;69,2; 96,8; 101,5}

10

x = {1; 2,2; 3,4; 4,6; 5,8; 7; 8,2; 9,4; 10,6; 11,8}

y = {16,1; 15,7; 12,48; 12,24; 8,47; 9; 7,97; 6,22; 3,36;3,77}

11

x = {4,5; 5,2; 5,9; 6,6; 7,3; 8; 8,7; 9,4; 10,1; 10,8; 11,5}

y = {113,8; 97; 98,47; 77,04; 71,9; 69,33; 52; 33,21; 34,11; 15,06; 13,15}

12

x = {2,5; 5; 7,5; 10; 12,5; 15; 17,5; 20; 22,5; 25; 27,5; 30}

y = {1,4; 3,25; 10; 8,07; 13,27; 12; 16,39; 17,8; 22,79; 26,9; 25,3; 28}

13

x = {7; 7,4; 7,8; 8,2; 8,6; 9; 9,4; 9,8; 10,2; 10,6}

y = {77,28; 64,05; 62; 59,12; 48,32; 41,1; 38,43; 31,17; 22; 20,77}

14

x = {12; 12,7; 13,4; 14,1; 14,8; 15,5; 16,2; 16,9; 17,6; 18,3; 19; 19,7}

y = {33,15; 27; 28,07; 23,14; 18,34; 16,8; 10,08; 11,65; 7,17; 4,22; 3,35; 0,27}

15

x = {1,5; 3; 4,5; 6; 7,5; 9; 10,5; 12; 13,5; 15}

y = {19,11; 23,7; 23; 27,98; 30,24; 38,71; 39; 43,15; 42,77; 49,17}

16

x = {3; 3,6; 4,2; 4,8 ; 5,4; 6; 6,6; 7,2; 7,8; 8,4}

y = {20,5; 21,19; 14; 13,88; 12,2; 8; 8,87; 5,73; 1,2; 0,69}

Таблица 11.2

Исходные экспериментальные данные для заданий 2, 3, 5

Вариант

Экспериментальные данные (результаты измерений)

1

2

1

x = {0; 1,5; 3; 4,5; 6; 7,5; 9; 10,5; 12; 13,5; 15}

y = {13,51; 8,99; 8,13; 6,79; 6,24; 10,6; 13,02; 13; 15,51; 19,13; 21}

2

x = {2,5; 5; 7,5; 10; 12,5; 15; 17,5; 20; 22,5; 25; 27,5; 30}

y = {1,27; 4,81; 6,99; 8; 10,17; 9,05; 8,98; 6,81; 4,15; 3,71; 3,13; 1,57}

3

x = {7,1; 7,4; 7,7; 8; 8,3; 8,6; 8,9; 9,2; 9,5; 9,8; 10,1}

y = {8,27; 2,61; 3,24; 1,69; 1,48; 3,7; 5,05; 5,47; 10,3; 11; 17,21}

4

x = {7,5; 10; 12,5; 15; 17,5; 20; 22,5; 25; 27,5; 30}

y = {7,06; 2,41; 4; 2,25; 3,94; 4,06; 8,96; 13; 16,64; 17,3}

5

x = {9; 9,5; 10; 10,5; 11; 11,5; 12; 12,5; 13; 13,5}

y = {11,81; 15,2; 22,73; 25,3; 24; 13,4; 12,99; 7,67; 3; 1,55}

6

x = {4,2; 5,4; 6,6; 7,8; 9; 10,2; 11,4; 12,6; 13,8; 15; 16,2}

y = {1,72; 3,05; 7; 10,21; 9,13; 10,38; 8,51; 9,62; 7,28; 3,18; 1,17}

7

x = {1; 2,2; 3,4; 4,6; 5,8; 7; 8,2; 9,4; 10,6; 11,8; 13; 14,2}

y = {5,36; 2,28; 1,8; 2,05; 6,11; 10,07; 10,51; 12; 16,93; 16,37; 20; 26,44}

8

x = {10; 13; 16; 19; 22; 25; 28; 31; 34; 37; 40; 43}

y = {17,6; 8,42; 4,94; 7,7; 6,9; 7,37; 10,21; 18; 16,25; 29,43; 37,57; 37,95}

9

x = {7; 7,4; 7,8; 8,2; 8,6; 9; 9,4; 9,8; 10,2; 10,6; 11; 11,4}

y = {1,52; 8,71; 15,17; 22; 20,65; 14,97; 13,11; 8,13; 6,39; 1,99; 3; 2,45}

10

x = {4,5; 6; 7,5; 9; 10,5; 12; 13,5; 15; 16,5; 18; 19,5; 21; 22,5}

y = {115; 110,21; 98,1; 65,77; 62; 43,27; 38,13; 35,84; 30;35,76; 40,14; 55; 57,72}

11

x = {1; 2,2; 3,4; 4,6; 5,8; 7; 8,2; 9,4; 10,6; 11,8; 13; 14,2; 15,4}

y = {18,73; 11,17; 4,95; 5,27; 2; 8,61; 10,37; 34; 35,99; 50,37; 49,24; 71; 74,12}

Окончание таблицы 11.2

1

2

12

x = {4,2; 5,4; 6,6; 7,8; 9; 10,2; 11,4; 12,6; 13,8; 15; 16,2}

y = {65,38; 68,15; 77; 81,99; 80,72; 78,15; 66,77; 64; 50,04; 41,15; 42,37}

13

x = {3,3; 3,8; 4,3; 4,8; 5,3; 5,8; 6,3; 6,8; 7,3; 7,8; 8,3; 8,8}

y = {15,37; 21; 29,07; 30,24; 25,61; 21,15; 22; 17,06; 10,19; 4,35; 4,11; 0,27}

14

x = {2,5; 5; 7,5; 10; 12,5; 15; 17,5; 20; 22,5; 25; 27,5; 30}

y = {12,55; 21,57; 22; 28,79; 35,63; 29; 27,59; 13,36; 12,71; 9; 6,99; 2,27}

15

x = {3,4; 4,2; 5; 5,8; 6,6; 7,4; 8,2; 9; 9,8; 10,6; 11,4; 12,2}

y = {17,41; 8,77; 10,25; 4; 3,13; 8,36; 11,48; 23,37; 21,75; 35; 41,09; 42,07}

16

x = {7,1; 7,4; 7,7; 8; 8,3; 8,6; 8,9; 9,2; 9,5; 9,8; 10,1; 10,4}

y = {37,51; 24; 23,68; 17,27; 16,25; 12,07; 12,51; 16; 18,25; 29,43; 30,17; 38,65}

16

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]