Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОБЩАЯ БИОЛОГИЧЕСКАЯ ХИМИЯ / КОНСПЕКТ ЛЕКЦИЙ / Углеводы.Обмен углеводов_2006.doc
Скачиваний:
84
Добавлен:
09.04.2015
Размер:
1.94 Mб
Скачать

5.2.2 Гликолиз

Гликолизуниверсальный и основной процесс катаболизма углеводов для большинства организмов, это последовательность реакций, приводящих к превращению глюкозы в пируват с одновременным образованием АТФ.

Важнейшими моносахаридами, катаболизм которых осуществляется по гликолитическому пути, являются Д-глюкоза и Д-фруктоза. Однако и другие моносахариды способны распадаться по пути гликолиза, поскольку они легко превращаются в эти сахара. Гликолизпроцесс анаэробный, однако он может протекать как в отсутствии, так и в присутствии кислорода. Он является ключевым метаболическим путем, генерирующим энергию в форме АТФ в клетках, где отсутствует фотосинтез.

Исследования химизма гликолиза показали, что начальные этапы процессов брожения и дыхания имеют общий путь. Это открытие было уникальным, потому что оно вскрывало существование внутреннего единства живой материи. При дыхании у аэробных организмов гликолиз предшествует циклу трикарбоновых кислот и цепи переноса электронов. Пируват проникает в митохондрии, где он полностью окисляется до СО2, в результате чего с высокой эффективностью из гексозы извлекается свободная энергия. При брожении, в анаэробных условиях (дрожжи, молочнокислые бактерии), пируват превращается в продукты брожения (этанол, лактат).

Все реакции гликолиза протекают в цитоплазме клетки и катализируются десятью различными ферментами.

Первой ферментативной реакцией гликолиза является фосфорилирование, т.е. перенос остатка ортофосфата на глюкозу за счет АТФ. Реакция катализируется ферментом гексокиназой, относящимся к классу трансферазы:

Вдальнейшем остаток фосфорной кислотыбудем обозначать символом: .

Второй реакцией гликолиза является превращение глюкозо-6-фосфата под действием фермента глюкозо-6-фосфат-изомеразы во фруктозо-6-фосфат:

Третья реакция катализируется ферментом фосфофруктокиназой (класс трансферазы):

Четвертую реакцию гликолиза катализирует фермент альдолаза (класс лиазы). Под влиянием этого фермента фруктозо-1,6-бисфосфат расщепляется на две фосфотриозы:

Пятая реакция – это реакция изомеризации триозофосфатов, катализируется ферментом триозофосфатизомеразой:

В последующие реакции гликолиза может непосредственно включаться только один из двух образующихся триозофосфатов, а именно – глицеральдегид-3-фосфат. Вследствие этого по мере потребления в ходе дальнейших превращений альдегидной формы фосфотриозы, дигидроксиацетонфосфат превращается в глицеральдегид-3-фосфат, т.е. дальнейшему окислению подвергается 2 молекулы фосфотриозы.

Образованием глицеральдегид-3-фосфата завершается первая стадия гликолиза.

Вторая стадия включает в себя окислительно-восстановительную реакцию, сопряженную с субстратным фосфорилированием, в процессе которого образуется АТФ.

В результате шестой реакции глицеральдегид-3-фосфат в присутствии фермента глицеральдегидфосфатдегидрогеназы (класс оксидоредуктазы), кофермента НАД+и неорганического фосфата подвергается своеобразному окислению с образованием 1,3-бисфосфоглицериновой кислоты и восстановленной формы НАДН:

1,3-бисфосфоглицерат представляет собой высокоэнергетическое соединение.

Седьмая реакция катализируется фосфоглицераткиназой (класс трансферазы), при этом происходит передача богатого энергией фосфатного остатка на АДФ с образованием АТФ и 3-фосфоглицериновой кислоты:

Данная реакция является реакцией субстратного фосфорилирования.

Восьмая реакция сопровождается внутримолекулярным переносом оставшейся фосфатной группы под действием фермента фосфоглицеромутазы (класс изомеразы).

Девятая реакция катализируется ферментом енолазой (класс лиазы):

Десятая реакция характеризуется разрывом высокоэнергетической связи и переносом фосфатного остатка от фосфоенолпировиноградной кислоты на АДФ (субстратное фосфорилирование).

Катализируется ферментом пируваткиназой (класс трансферазы):

Далее пути аэробного и анаэробного окисления расходятся.

В анаэробных условиях дальнейшие превращения пирувата приводят к образованию продуктов брожения.

В общем виде схема гликолиза имеет вид (рис.1).

      1. Спиртовое брожение

Превращение пировиноградной кислоты в этанол идет в двух последовательных реакциях. В первой происходит ее декарбоксилирование:

Реакция катализируется пируватдекарбоксилазой (класс лиазы), которая содержит в качестве кофермента тиаминпирофосфат (ТПФ), активную форму витамина В1.

Вторая реакция состоит в восстановлении ацетальдегида в этанол за счет НАДН:

Реакция катализируется алкогольдегидрогеназой (класс оксидоредуктазы), коферментом которой является НАДН.

В данной реакции используется тот НАДН, который образовался при гликолизе в шестой реакции, при этом регенерируется НАД+. Суммарная реакция спиртового брожения:

Спиртовое брожение является важнейшей стадией в технологии хлеба,спирта, пива, вина.

Рис.1 Схема гликолиза

      1. Молочнокислое брожение

Молочнокислое брожение отличается от спиртового тем, что пировиноградная кислота не декарбоксилируется как при спиртовом брожении, а непосредственно восстанавливается лактатдегидрогеназой (класс оксидоредуктазы) с участием НАДН, образовавшегося при гликолизе в шестой реакции:

Суммарная реакция превращения глюкозы в лактат:

Молочнокислое брожение является основной стадией в производстве ржаного хлеба, в консервировании овощей и плодов, в изготовлении кисломолочных продуктов.

Молочнокислое брожение играет большую роль в засолке огурцов и помидоров, квашении капусты, мочке яблок. Молочная кислота является консервирующим фактором, предотвращающим развитие посторонней, особенно гнилостной, микрофлоры, придает продукту специфический вкус и аромат.

      1. Биоэнергетика анаэробного разложения углеводов

В процессе гликолиза затрачиваются две молекулы АТФ. Это реакции: первая – образования глюкозо-6-фосфата и третья – фруктозо-1,6-бисфосфата. В двух реакциях синтезируется АТФ за счет субстратного фосфорилирования. Это реакции образования глицерат-3-фосфата (см. реакцию 7) и ПВК (реакция 10). Поскольку в ходе гликолиза каждая молекула гексозы расщепляется на 2 трехуглеродных фрагмента, то, следовательно, в этом процессе синтезируются 4 молекулы АТФ. В шестой реакции (окисления глицеральдегид-3-фосфата) образуется 2 молекулы НАДН2, которые в дыхательной цепи дадут 6 молекул АТФ. Итого в процессе гликолиза синтезируется 4+6–2=8 молекул АТФ. При образовании этилового спирта или молочной кислоты НАДН2затрачивается на восстановление уксусного альдегида и ПВК соответственно. Поэтому выход АТФ при спиртовом или молочнокислом брожении глюкозы составит 4+6–2––6=2 молекулы АТФ.