
- •Аналоговая электроника
- •1 Полупроводниковые приборы
- •1.1 Зонная теория полупроводников
- •1.2 Примесные полупроводники
- •1.3 Полупроводниковый диод
- •1.4 Стабилитрон
- •1.5 Транзисторы
- •1.5.1 Структура транзистора
- •1.5.2 Схемы включения транзистора
- •1.5.3 Характеристики транзистора (схема об)
- •1.5.4 Физическая модель транзистора
- •1.5.5 Полевые (канальные) транзисторы (пт)
- •1.6 Другие полупроводниковые приборы
- •1.6.1 Тиристоры
- •1.6.2 Фотоэлектронные полупроводниковые приборы
- •1.6.3 Интегральные микросхемы
1.6.3 Интегральные микросхемы
Микросхема - это конструктивно законченное микроэлектронное изделие, выполняющее определеннуо функцию преобразования информации, содержащее совокупность электрически связанных между собой электрорадиоэлементов (транзисторов. диодов. резисторов. конденсаторов и др.), изгототовленных в едином технологическом цикле.
Микросхемы изготавливают групповым методом, тиражируя одновременно в одной партии от нескольких десятков до нескольких десятков тысяч микросхем. По конструктивно-технологическому исполнению микросхемы делят на три группы: полупрововодниковые. пленочные и гибридные. В полупроводниковой интегральной микросхеме все элементы и межэлементные соединения выполнены в объеме и на поверхности полупроводниковой подложки, в пленочной интегральной микросхеме все элементы и соединения между ними выполнены в виде пленок В настоящее время методами пленочной технологии реализуются только пассивные элементы микросхем - резисторы, конденсаторы и индуктивности. В гибридной микросхеме в качестве активных электрорадиоэлементов используется навесные дискретные полупроводниковые приборы или полупроводниковые интегральные микросхемы, а в качестве пассивных элементов-пленочные резисторы, конденсаторы, катушки индуктивности и соединяющие их пленочные проводники.
Механической основой такой микросхемы является диэлектрическая подложка.Она выполняет функции механического основания, изоляции элементов друг от друга. теплоотвода.Подложки выпускаются в виде тонких круглых или прямоугольных пластин.
Для полупроводниковых микросхем используюг монокристаллические полупроводниковые (кремний,арсенид галлия ) и монокристаллические диэлектрические (сапфир) подложки.На них в дальнейшем формируют слой полупроводникового материала ,в котором создают элементы микросхем.
Показателем сложности микросхемы является степень интеграции К. которая характеризуется числом содеращихся в ней элементов и компонентов N: К =lgN. где К округляется до ближайшего большего целого числа. По степени интеграции микросхемы подразделяют на:
а) Малые интегральные схемы (МИС) - это схемы 1- 2-й степени интеграции, содержащие от нескольнж до 100 элементов и компонентов, в состав которых входит один или несколько видов функциональных аналоговых или логических элементов. Например, логических элементов И, ИЛИ, НЕ, триггеров, усилителей, фильтров и т.д.
в) Средние интегральные схемы [СИС] - схемы 2-3-й степени интеграции, содержащие от нескольких десятков до 1000 элементов и компонентов, в состав которых входят один или несколько одинаковых функциональных узлов электронных устройств (регистр, счетчик, дешифратор, постоянное запоминающее устройство).
г) Большие интегральные схемы (БИС) - схемы 3-4-й степени интеграции, содержащие от нескольких сотен до 10000 элементов. в состав которых входят одно или несколько функциональных устройств (арифметико-логическое устройство, оперативное запоминающее устройство ,перепрограммируемое постоянное запоминающее.
д) Сверхбольшие интегральные схемы (СБИС] - это интегральные схемы 5-7 степени интеграции представляющиесобой законченное микроэлектронное изделие ,способное выполнять функции аппаратуры (например, микропроцессор).
Рис.1-33
Полупрводниковая ИС
Наибольшей степенью интеграции обладают полупроводниковые микросхемы. На рис.1-33 показаны полупроводниковая микросхема инвертора и его принципиальная схема. Элементы для наглядности расположены в одну линию.Все элементы размещены в одной кремниевой пластине {глава 1.2.1} р-типа. Для исключения взаимного влияния активные и пассивные элементы размещаются в островках, изолированных от подложки. Сверху подложка защищена изоляционным слоем, на который нанесены проводящие дорожки, соединяющие элементы между собой.
Для производства микросхем применяется планарная технология, помогающая одновременно получать большое количество микросхем в едином технологическом процессе. На одной пластине кремния создаются различные структуры, образующие законченную схему, включающую активные и пассивные элементы.
Основными полупроводниковыми материалами, на которых в настоящее время изготавливаются полупроводниковые микросхемы являются кремний и германий.Однако более перспективным. является кремний. Сн легко поддается селективной диффузии, имеет более высокое сопротивление и позволяет расширить интервал рабочих температур микросхем. На поверхности кремния легко создается окисная пленка. которая служит защитным покрытием при проведении ряда технологических операций и предохраняет готовую схему от внешних воздействий.
Рис.1-34
Фотошаблоны
После окисления поверхности пластины необходимо выделить на ней локальные области, в которые должна проводиться диффузия. Для этой цели применяют метод фотолитографии. Для изготовления микросхем нужно несколько (5-20) разных фотошаблонов. На рис.1-34 показан набор фотошаблонов для изготовления несложной микросхемы.
Описанный процесс изготовления позволяет получить сразу несколько десятков микросхем средней и высокой степени интеграции, т. е. столько, сколько может быть размещено на одной пластине кремния диаметром около 70 мм. Пластина разделяется на отдельные микросхемы. которые герметизируются в корпусе. Предварительно контактные площадки микросхемы соединяются проводниками с выводами корпуса.