Задание 3.
Построить кривые в полярной системе координат.
3.01.
![]()
3.02.
![]()
3.03.
![]()
3.04.
![]()
3.05.
![]()
3.06.
![]()
3.07.
![]()
3.08.
![]()
3.09.
![]()
3.10.
![]()
3.11.
![]()
3.12.
![]()
3.13.
![]()
3.14.
![]()
3.15.
![]()
3.16.
![]()
3.17.
![]()
3.18.
![]()
3.19.
![]()
3.20.
![]()
3.21.
![]()
3.22.
![]()
3.23.
![]()
3.24.
![]()
3.25.
![]()
3.26.
![]()
3.27.
![]()
3.28.
![]()
3.29.
![]()
3.30.
![]()
§ 9. Поверхности второго порядка
-
Цилиндрические поверхности с образующими, параллельными координатным осям.
Цилиндрической поверхностью называется поверхность, образованная движением прямой, пересекающей заданную линию и параллельной заданному направлению. Заданная линия называется направляющей, а совокупность параллельных прямых – образующими.
Уравнение
задает цилиндрическую поверхность с
образующей, параллельной оси
и направляющей – кривой
в плоскости
.
Уравнение
задает цилиндрическую поверхность с
образующей, параллельной оси
и направляющей – кривой
в плоскости
.
Уравнение
задает цилиндрическую поверхность с
образующей, параллельной оси
и направляющей – кривой
в плоскости
.
Уравнение
задает круговой цилиндр с образующей
параллельной оси
и направляющей – окружностью
в плоскости
.
Уравнение
задает эллиптический цилиндр.
Уравнение
задает параболический цилиндр.
Уравнение
задает гиперболический цилиндр.
2. Поверхности второго порядка, заданные своими каноническими уравнениями.
-

– эллипсоид
![]()
![]()



![]()
0

![]()
![]()
![]()
![]()
![]()
При
– сфера
-
– однополостный
гиперболоид
![]()


![]()


![]()
![]()

![]()
![]()

Рис. 27.
-

– двуполостный гиперболоид




![]()
b -b 0
![]()
![]()
![]()
Рис. 28.
-
,
– эллиптический параболоид
![]()


![]()

![]()
![]()
![]()
Рис. 29.
-
,
– гиперболический параболоид

![]()




![]()


![]()
![]()
Рис. 30.
-
– конус второго
порядка
![]()


![]()
![]()
Рис. 31.
Задание 4
Определить виды поверхностей и изобразить их.
4.01.
1.
![]()
2.
![]()
3.
![]()
4.02.
1.
![]()
2.
![]()
3.
![]()
4.03.
1.
![]()
2.
![]()
3.
![]()
4.04.
1.
![]()
2.
![]()
3.
![]()
4.05.
1.
![]()
2.
![]()
3.
![]()
4.06.
1.
![]()
2.
![]()
3.
![]()
4.07.
1.
![]()
2.
![]()
3.
![]()
4.08.
1.
![]()
2.
![]()
3.
![]()
4.09.
1.
![]()
2.
![]()
3.
![]()
4.10.
1.
![]()
2.
![]()
3.
![]()
4.11.
1.
![]()
2.
![]()
3.
![]()
4.12.
1.
![]()
2.
![]()
3.
![]()
4.13.
1.
![]()
2.
![]()
3.
![]()
4.14.
1.
![]()
2.
![]()
3.
![]()
4.15.
1.![]()
2.
![]()
3.
![]()
4.16.
1.![]()
2.
![]()
3.
![]()
4.17.
1.
![]()
2.
![]()
3.
![]()
4.18.
1.
![]()
2.
![]()
3.
![]()
4.19.
1.
![]()
2.
![]()
3.
![]()
4.20.
1.
![]()
2.
![]()
3.
![]()
4.21.
1.
![]()
2.
![]()
3.![]()
4.22.
1.
![]()
2.
![]()
3.
![]()
4.23.
1.![]()
2.![]()
3.![]()
4.24.
1.![]()
2.![]()
3.![]()
4.25.
1.![]()
2.![]()
3.![]()
4.26.
1.![]()
2.![]()
3.![]()
4.27.
1.![]()
2.![]()
3.![]()
4.28.
1.![]()
2.![]()
3.![]()
4.29.
1.![]()
2.![]()
3.![]()
4.30.
1.![]()
2.![]()
3.![]()
