Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекции математика / 04 Лекции 14 Операционное исчисление

.pdf
Скачиваний:
90
Добавлен:
02.04.2015
Размер:
198.37 Кб
Скачать

1

Операционное исчисление

Введение.

Тема посвящена изучению одной из важных областей математического анализа. В физике, механике, электротехнике, особенно в современной автоматике и телемеханике, при решении различных вопросов широко используются методы операционного исчисления. В этой теме будут даны основные понятия операционного исчисления и изложены операционные методы решения обыкновенных дифференциальных уравнений. И начинается она лекцией

"Интегральное преобразование Лапласа", которая состоит из учебных вопросов:

1.Оригиналы и изображения.

2.Свойства преобразования Лапласа.

3.Свойства изображений. Таблица изображений простейших функций.

По первому учебному вопросу нам предстоит познакомиться с понятиями оригинала (или изображаемой по Лапласу функции), интегралом Лапласа и преобразованием Лапласа или изображением, а также новыми математическими символами, которые применяются для их обозначения. Известно, что соответствие между оригиналами и их изображениями обладает свойством однозначности.

По второму учебному вопросу рассматриваются основные свойства преобразования Лапласа: линейности, подобия, запаздывания оригинала, смещения изображения и другие.

По третьему учебному вопросу находятся изображения функции Хевисайда,

функций sin t , cos t , sin at , cos at , e - a t , e - a t sin at , e - a t cos at и других, и

полученные результаты заносятся в таблицу изображений простейших функций.

1. Оригиналы и изображения.

Определение 1 . Кусочно-непрерывная функция f : ]− ∞,[R1 называется оригиналом, если:

1)t < 0 ( f (t)) = 0 ,

2)M >0 a0 0 t R1 (f (t) Mea0t ).

0,

t < 0,

 

0,

t < 0,

Например, функции σ и h , σ(t) =

1,

t 0

h(t) =

 

t 0

 

cost,

являются оригиналами.

Функция σ называется единичной функцией Хевисайда (рис. 1).

σ(t)

1

0

t

Рис. 1

2

Очевидно, что если функция g удовлетворяет условию 2) определения оригинала, то функция f ,

f (t) =σ(t)g(t)

(1)

является оригиналом. В дальнейшем, краткости ради, оригиналы (I) будем

обозначать той же буквой g ; тогда σ(t) =1,

h(t) = cost .

 

 

 

 

 

 

 

Пусть p = a +ib - некоторое комплексное

число

 

и

 

 

f - оригинал.

Рассмотрим

несобственный интеграл F ( p) ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F ( p) = Alim→∞ ept f (t)dt = ept f (t)dt .

 

 

(2)

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

Покажем, что при Re p = a0 > 0 интеграл F ( p)

ограничен по модулю. В самом деле,

так как ept = e(a+ib)t

= eat (cosb isin bt) , то имеем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F ( p)

 

=

eat cosbtf (t)dt ieat sin btf (t)dt

2eat

 

f (t)

 

dt 2M e(aa0 )t dt =

 

 

 

 

 

 

0

0

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

=

2M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a a0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Определение 2. Интеграл F ( p) ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F ( p) = ept

f (t)dt

 

 

 

 

 

 

(3)

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

F ( p) называется

называется интегралом

Лапласа,

а

 

функция

преобразованием Лапласа функции f или изображением f .

 

 

 

 

Тот факт, что

f является оригиналом,

а F -

его изображением,

записывают

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

так: f (t)F( p), (F

( p)f (t)) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 1 . Найти изображение единичной функции Хевисайда.

 

 

 

 

 

 

 

 

 

 

= ept

 

 

 

 

= −eat

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. При Re p > 0 имеем ept dt

 

 

 

 

 

 

ebt

 

 

=

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

p

 

 

 

0

 

 

 

p

 

 

0

 

p

 

Поэтому

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Re p > 0) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

,

 

 

 

 

 

 

(4)

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 2 .

Найти изображение показательной функции f (t) = eαt , (α C)

 

 

 

 

Решение. Вычисляя интеграл F ( p) при Re(a α) >0 , получаем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

F ( p) = ept eαt dt = e( pα)t dt =

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

p α

 

 

 

 

 

 

 

 

 

 

 

 

0

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eαt

, (Re( p α) > 0) .

 

 

 

 

 

 

(5)

 

 

 

 

 

 

p α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

2.Свойства преобразования Лапласа.

1.Единственность. Если две непрерывные функции f и g являются

оригиналами и имеют одно и тоже изображение F , то эти функции тождественно равны.

2. Линейность. Если

и β

- заданные

f (t)F ( p),

g(t)G( p) и α

 

 

 

числа, то

 

 

 

 

 

 

 

(6)

 

αf (t) + βg(t)αF( p) + βG( p) .

 

 

 

 

 

Доказательство . По определению изображения и известных свойств интеграла имеем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

αf (t) + βg(t) ept (αf (t) + βg(t))dt =αept f (t)dt + βept g(t)dt =αF ( p) + βG( p)

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример

 

3 . Найти изображения: а) cos , б) sin , в) ch , г) sh ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

Решение. Так как (см. прим. 2) eit

 

 

 

 

 

 

,

 

 

 

 

 

eit

 

 

 

 

 

 

 

,

et

 

, et

 

,

 

 

 

 

 

 

 

 

 

 

 

 

p + i

 

p 1

p +

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

то формулы cost =

 

1

 

(eit

 

 

+ eit

),

sin t =

1

(eit

 

eit ), ch t =

 

1

 

(et

 

+ e

t ),

 

 

 

 

 

sh t =

1

(et et )

 

 

 

2

 

 

2

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и формула (6) дают:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

1

 

 

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а) cost

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

; б) sin t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

i

 

 

 

 

 

 

 

 

 

 

 

 

p

+1

 

 

 

 

 

 

 

 

2i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

p +i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p i

 

 

 

p +i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

1

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

в) ch t

 

 

 

+

 

=

 

 

 

 

; г)

sh t

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

1

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

1 p +1

 

 

 

 

p

2

1

 

 

 

 

 

 

 

p 1 p +1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

3 . Подобие. Если

 

 

f

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α > 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(t)F ( p) , то

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (αt)1 F ( p ) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Доказательство . Подстановка αt = x

дает:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

p

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (αt)

ept f (αt)dt =

 

 

 

e

α

f (x)dx =

F (

) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 4 . Из формулы (7) и примеров 3а) и 3б) следует:

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

pα

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4а) cosαt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

4б) sinαt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α p

 

 

2

+1

 

p2

 

+α2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α p

2

 

 

 

 

 

 

 

 

 

 

p2

+α

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( p) , то

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Запаздывание. Если f (t)F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

τ > 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(8)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t τ)eτp F( p) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

Доказательство . Подстановка t τ = x дает:

 

 

 

 

 

 

 

 

 

f (t τ) f (t τ)ept dt = ep( x+τ) f (x)dx = epτ f (x)epx dx = eτp F ( p) ,

 

0

 

 

 

 

τ

 

 

 

0

 

так как f (x) = 0 при e x <0 .

 

 

 

 

 

Пример

5 . Изображением функции

f (t) =σ(t τ)

будет F ( p) = eτp p1 ,

 

 

e

pt

 

 

 

 

 

 

 

то есть σ

(t τ)

 

.

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 .

 

 

 

 

 

 

 

 

 

 

Смещение. Если f (t)F ( p) , то при Re( p + β) >0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(9)

 

 

 

 

 

 

eβt f (t)F ( p + β) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Доказательство . В самом деле eβt f (t)epteβt f (t)dt =e( p+β)t f (t)dt =F(p +β) .

 

 

 

 

 

 

 

 

 

 

0

0

Пример 6 . Из формулы (9) и примеров 4а) и 4б) следует:

 

6а) e β t

cos

α t ← =

p + β

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( p + β ) 2 + α 2

 

 

 

 

6б) e β t

 

 

 

 

α

 

 

 

 

 

sin

α t ← =

 

 

 

.

 

 

( p + β ) 2

+ α 2

 

 

 

 

 

 

 

 

 

 

 

 

3. Таблица изображений некоторых функций.

Интеграл Лапласа (3) позволяет оригиналу f найти его изображение F . С

помощью преобразования Фурье решим обратную задачу: по заданному изображению F найдем оригинал f . Напомним определение преобразования

Фурье. Если

C(w) = 1 ϕ(t)eiwt dt ,

2π −∞

ϕ(t) = 1 C(w)eiwt dw .

2π −∞

Здесь функция ϕ должна быть, в частности, абсолютно интегрируема на

 

 

 

 

 

 

l

под несобственным интегралом от −∞ до понимается предел llim→∞

.

Пусть p = a + iw, (a > a0 ) и f

- оригинал с изображением F .

l

 

 

 

 

2πf (t)eat ,

t 0,

 

Тогда, ясно, что и функция ϕ , ϕ(t) =

0,

t < 0

 

 

 

 

 

 

является оригиналом. Из формулы (10) следует:

 

 

 

1

 

 

 

C(w) =

ϕ(t)eiwt dt = e(a+iw) f (t)dt = F (a + iw) .

 

2π

 

 

−∞

 

0

 

 

 

 

 

 

 

(10)

(11)

]− ∞, [ и

5

Поэтому формула (11) дает:

2πf (t)eat ,

t 0,

(12)

 

 

F (a + iw)eiwt dt =

0,

t < 0.

−∞

 

 

Из первой строчки равенства (12) получаем, что при

 

 

 

1

 

 

 

f (t) =

e(a+iw)t F (a iw)dw .

 

(13)

2π

 

 

−∞

p = a +iw проходят в комплексной

Когда w меняется от −∞ до , значения

плоскости прямою, параллельную мнимой оси; при этом условно пишут, что p

меняется от a iдо a +i.

Так как dp =idw , то из формулы (13) f (t) = 21πi

следует:

e pt F ( p)dp, (a > a0 ) .

(14)

−∞

 

Это и есть формула обращения для преобразования Лапласа.

Метод вычисления интегралов типа (14) дан в теме (Теория функции

комплексного переменного».

f (t) = pres=p

e pt F( p) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Таблица преобразований Лапласа

 

 

 

 

 

 

 

 

 

 

( a, b, c - различные постоянные)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t)

 

 

 

 

 

F ( p) = ept f (t)dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

1.

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

 

 

 

 

 

t n1

 

 

 

 

 

 

 

1

 

, (n =1, 2, ...)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pn

 

 

 

 

(n 1)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

π t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

 

 

 

 

2 t π

 

 

 

 

 

 

 

 

 

 

 

 

p32

 

6.

 

 

 

2n t

n

1

2

 

 

 

 

 

(n+1

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

2

, (n =1, 2, ...)

1

3

5...(2n 1)

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.

 

 

 

 

 

t

k 1

 

 

 

 

 

 

 

 

Γ(k )

 

 

 

(k

> 0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pk

 

 

 

 

 

 

 

 

 

 

6

8.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eat

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

te

at

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( p a) 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.

 

 

 

 

 

 

 

 

 

1

 

 

 

t n1eat

 

 

 

1

 

 

 

 

 

, (n =1, 2, ...)

 

 

 

 

 

 

 

 

(n

1)!

 

 

 

( p a)n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 1

 

at

 

 

 

 

 

Γ(k )

 

 

 

(k

> 0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

e

 

 

 

 

 

 

( p a)k

 

 

 

 

 

 

 

 

 

 

 

 

12.

 

 

 

 

 

 

 

 

 

1

 

 

 

(eat

ebt )

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b

 

 

 

 

 

( p a)( p b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13.

 

 

 

 

 

 

1

 

 

 

 

(aeat

bebt )

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b

 

 

 

 

 

( p a)( p b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14.

(b c)eat

+(c a)ebt +(a b)ect

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( p a)( p b)( p c)

 

 

 

(a b)(b c)(c a)

 

 

 

 

 

 

 

 

 

 

 

15.

 

 

 

 

 

 

 

 

 

 

 

 

 

a1 sin at

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2 + a2

 

 

 

 

 

 

 

 

16.

 

 

 

 

 

 

 

 

 

 

 

 

 

cos at

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2 + a2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17.

 

 

 

 

 

 

 

 

 

 

 

 

 

a1 sh at

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2 a2

 

 

 

 

 

 

 

 

18.

 

 

 

 

 

 

 

 

 

 

 

 

 

ch at

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2 a2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19.

 

 

 

 

 

 

 

1

 

 

(1 cos at)

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p( p2 + a2 )

 

 

 

 

 

 

 

 

 

 

 

a2

 

 

 

 

 

 

 

 

 

 

20.

 

 

 

 

 

 

1

(at sin at)

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2 ( p2 + a2 )

 

 

 

 

 

 

 

 

 

a3

 

 

 

 

 

 

 

21.

 

1

 

 

 

(sin at at cos at)

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( p2 + a2 )2

 

 

 

 

 

2a3

 

 

 

 

 

 

 

 

 

 

 

 

22.

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

sin at

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( p2 + a2 )2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2a

 

 

 

 

 

 

 

 

 

 

23.

 

 

1

 

(sin at + at cos at)

 

 

 

 

 

 

 

 

 

 

 

 

 

p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2a

 

 

 

 

 

 

 

 

( p2 + a2 )2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24.

 

 

 

 

 

 

 

 

 

 

 

 

 

t cos at

 

 

 

 

 

 

 

 

 

 

p2 a2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( p2 + a2 )2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25.

 

 

 

 

 

 

 

cos at cosbt

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

(a2

b2 )

 

 

 

 

 

 

 

 

( p2

+ a2 )( p2 + b2 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b2 a2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 eat sin bt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( p a)2 + b2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

at

cosbt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( p a)2 + b2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

at

 

 

at

 

 

 

 

 

 

 

 

 

 

at 3

 

 

 

 

at

3

 

 

 

 

 

 

 

 

 

 

 

3a2

 

 

 

 

 

 

 

 

 

 

28.

e

 

e

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3sin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

 

2

 

 

 

2

 

 

 

 

 

 

 

 

 

 

p

+ a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29.

 

 

 

sin atch at cos atsh at

 

 

 

 

 

 

 

 

 

 

 

 

 

4a3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p4 + 4a4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30.

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

sin atsh at

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p4 + 4a4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2a2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31.

 

 

 

 

 

 

 

 

1

 

 

(sh at sin at)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p4 a4

 

 

 

 

 

 

 

 

 

 

 

 

2a3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32.

 

 

 

 

 

1

(ch at cos at)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p4 a4

 

 

 

 

 

 

 

 

 

 

 

2a2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33.

 

 

(1 + a2t 2 )sin at at cos at

 

 

 

 

 

 

 

 

 

 

 

8a3 p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( p2 + a2 )3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34.

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

e

at

(1

+ 2at)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( p a) 32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35.

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

(ebt

 

eat )

 

 

 

 

 

 

 

p a

 

 

p b

 

 

 

 

 

 

 

 

 

 

 

 

π t3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

2a

 

 

 

2

a

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

36.

 

 

 

 

 

 

 

 

ea

t

eλdλ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p + a

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

a2t a

 

t λ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

37.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

e

 

dλ

 

 

 

 

 

 

 

 

 

 

 

 

p ( p + a

2

)

 

 

 

 

 

 

 

 

 

a

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J0 (at)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2 + a2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν

 

 

 

 

 

 

 

 

 

 

 

 

 

(

p2 + a2 p)ν

 

 

 

 

 

 

 

 

 

39.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

Jν (at)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ν > −1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2 + a2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kak

 

Jk (at)

 

 

 

 

 

(

p2 + a2

p)k , (k > 0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41.

 

 

 

 

 

 

 

 

 

 

 

0, 0 <t < k,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ekp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1,

 

 

 

t > k.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42.

 

 

 

 

 

 

 

 

 

 

 

0, 0 <t < k,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ekp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k,

 

t > k.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43.

 

 

 

1, 0 <t < k,

 

 

 

 

 

 

 

 

 

1 ekp

 

 

 

 

0,

 

 

t > k.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44.

 

 

 

 

 

 

sin kt

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

cth π p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2 + k 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J0 (2 kt )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

k

 

45.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos 2

 

kt

 

 

 

 

 

 

 

 

e

k p

46.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47.

 

 

 

 

 

1

 

 

 

 

ch 2

kt

 

 

 

 

 

 

 

 

 

 

1

 

 

e k p

 

 

 

 

 

π t

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

k p

48.

 

 

 

 

 

 

 

 

sin 2

 

kt

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 32

 

 

 

 

 

 

 

 

π k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

(

μ1)/ 2

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J μ1 (2

kt )

 

e

k p

 

 

(μ > 0)

49.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

μ

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

k 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

k

p

 

 

 

(k > 0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

π t3

 

 

exp

4t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение.

На лекции рассмотрены основные понятия операционного исчисления, понятие оригинала и изображения, установлено взаимнооднозначное соответствие между ними и некоторые свойства преобразования Лапласа. Получена таблица изображений простейших функций, решены примеры на нахождение изображения заданной функции и восстановление оригинала по его изображению.

В качестве литературы, предлагаемой на самоподготовку, кроме конспекта лекции, можно рекомендовать учебное пособие Н.С.Пискунов "Дифференциальное и интегральное исчисления", том 2, глава XIX, параграфы 1 - 9. Для лучшего усвоения теоретических положений лекции при нахождении изображений и отыскании оригинала по изображению (элементарным методом, то есть с помощью свойств преобразования Лапласа и таблиц изображений) можно использовать дополнительную литературу: П.Е.Данко, А.Г.Попов, Т.Я.Кожевникова "Высшая математика в упражнениях и задачах", глава VIII, параграфы 1, 2.