
- •Лекция 1(2 часа) элементы электрических цепей
- •1.Предмет и задачи дисциплины. Построение курса. Методика работы над учебным материалом.
- •2. Общие понятия и определения линейных электрических цепей (лэц).
- •Источники электрической энергии.
- •4.Приемники электрической энергии
- •5.Основные топологические понятия и определения
- •6.Закон Ома и Кирхгофа
- •Лекция 2 (2часа) Расчет электрических цепей постоянного тока. Правила Кирхгофа.
- •1. Пример: Решение задачи методом непосредственного применения законов Кирхгофа.
- •2. Метод контурных токов.
- •3. Метод узлового напряжения (применим только в цепи, имеющей два узла).
- •Лекция 3 (2часа) синусоидальный ток. Формы его представления.
- •1.Основные параметры синусоидального тока
- •2.Представление синусоидального тока (напряжения) радиус - вектором.
- •Комплексное изображение синусоидального тока.
- •Лекция 4 (2часа) комплексные сопротивления и проводимости элементов электрических цепей
- •1.Комплексное сопротивление
- •2.Комплексная проводимость
- •Лекция 5 (2часа) энергетические характеристики электрических цепей синусоидального тока
- •1.Мгновенная мощность цепи с rl и с элементами
- •Активная, реактивная, полная мощность
- •Применим к (5.19) (5.11), тогда
- •Выражение мощности в комплексной форме
- •Лекция 6 (2часа) резонансные свойства электрических цепей синусоидального тока
- •Резонанс токов
- •Резонанс напряжений
- •Лекция 7. (2часа) трехфазные электрические цепи Общие сведения о трехфазных линейных электрических цепях
- •1.Схемы соединения трехфазных цепей
- •2.Соотношение между линейными и фазовыми напряжениями и токами
- •3.Мощность трехфазной цепи
- •4. Пример расчета трехфазной электрической цепи.
- •Лекция 8. (2часа)
- •4. Действующие значения несинусоидальных I и u
- •Лекция 9. Нелинейные цепи (2часа) Нелинейные цепи постоянного тока
- •1.Методы анализа нелинейных цепей
- •II метод опрокинутой характеристики
- •Методы анализа разветвленных нелинейных цепей
- •2.Характеристика магнитных свойств ферромагнитных материалов
- •3.Магнитные цепи
- •4.Анализ магнитных цепей постоянного тока
- •5.Особенности физических процессов в магнитных цепях переменного тока
- •Лекция 11. Анализ и расчет магнитных цепей.
- •1. Построение вебер-амперной характеристики участка магнитной цепи
- •Анализ неразветвленных магнитных цепей
- •Анализ разветвленных магнитных цепей
- •Лекция 12. Электромагнитные устройства
- •1.Физические основы построения сварочного трансформатора
- •2.Физические основы ферромагнитных стабилизаторов
- •3.Принцип работы электромагнитных механизмов. Электромагнитные реле.
- •Лекция 13. (2часа) Трансформаторы
- •1.Общие сведения о трансформаторах
- •2.Принцип работы однофазных трансформаторов
- •Лекция 14. (2часа) Режимы работы трансформаторов
- •1.Опыт холостого хода трансформатора
- •2. Опыт короткого замыкания трансформатора
- •3.Внешняя характеристика трансформатора
- •4.Коэффициент полезного действия трансформатора
- •Лекция 15. (4часа) асинхронные машины
- •1. Общие сведения и конструкция асинхронного двигателя
- •2. Принцип образования трехфазного вращающегося магнитного поля
- •3. Принцип действия асинхронного двигателя
- •4. Магнитные поля и эдс асинхронного двигателя
- •5. Основные уравнения асинхронного двигателя
- •6. Приведение параметров обмотки ротора к обмотке статора
- •7. Векторная диаграмма асинхронного двигателя
- •8. Схема замещения асинхронного двигателя
- •9. Потери и кпд асинхронного двигателя
- •10. Уравнение вращающего момента
- •11. Механическая характеристика асинхронного двигателя
- •12. Рабочие характеристики асинхронного двигателя
- •13. Пуск, регулирование частоты вращения и торможение асинхронного двигателя
- •Лекция 16. Однофазные асинхронные двигатели
- •Двухфазный конденсаторный двигатель
- •Однофазный двигатель с явно выраженными полюсами
- •Использование трехфазного двигателя в качестве однофазного
- •Лекция 17. (2часа) синхронные машины
- •1. Конструкция и принцип действия синхронного генератора
- •2. Эдс синхронного генератора
- •3. Синхронный двигатель. Конструкция и принцип действия
- •4. Система пуска синхронного двигателя
- •5. Реактивный синхронный двигатель
- •6. Шаговый двигатель
- •Лекция 18 (4часа) Машины постоянного тока
- •7.1. Принцип действия и конструкция
- •7.2. Способы возбуждения машин постоянного тока
- •Зависимость вращающего момента на валу электродвигателя постоянного тока от силы тока в обмотке якоря.
- •Механическая характеристика электродвигателя постоянного тока.
- •7.3 Регулирование частоты вращения двигателей.
- •7.4. Эдс и электромагнитный момент генератора постоянного тока
- •7.5. Двигатель постоянного тока
- •7 Семестр
- •3. Магнитоэлектрическая система
- •4. Электромагнитная система
- •5. Электродинамическая система
- •6. Индукционная система
- •7. Измерение тока и напряжения
- •8. Измерение мощности
- •9. Измерение сопротивлений
- •10. Измерение неэлектрических величин электрическими методами
- •Лекция 20. Полупроводниковые приборы (4часа)
- •1.Классификация полупроводниковых электронных приборов
- •2. Типы проводимости полупроводниковых материалов. Электронно-дырочный переход. Основные параметры полупроводниковых диодов.
- •3. Биполярные транзисторы.
- •4. Полевые транзисторы
- •5. Тиристоры
- •Электронные устройства Лекция 21. Преобразователи напряжения (4часа)
- •Выпрямители
- •Сглаживающие фильтры
- •3.Стабилизаторы напряжения
- •Лекция 22 (4часа) резистивные усилители низкой частоты
- •Принцип работы каскада по схеме с общим эмиттером
- •2.Дифференциальный усилитель
- •Усилитель по схеме с общим коллектором
- •4.Операционный усилитель
- •Импульсные устройства Лекция 23. Элементы импульсных устройств (4часа)
- •1.Общие сведения об импульсных сигналах
- •Электронные ключи
- •Компараторы
- •Лекция 24. Генераторы импульсных сигналов (4часа)
- •1. Формирующие цепи
- •2. Мультивибраторы
- •Период повторения:
- •Скважность:
- •3. Генераторы линейно изменяющегося напряжения.
- •Если напряжение на входе оу постоянное, то получаем:
- •Напряжением открывается диодD1. На интеграторе начинается формирование линейно падающего напряжения. Напряжение uoc также линейно убывает и в момент t3 принимает значение:
- •Далее значение uглин периодически изменяется от –0,79 в до 3,2 в, а uос от –2,32 в до 4,31 в. Цифровые устройства Лекция 25. Введение в цифровую электронику (6часов)
- •Общие сведения о цифровых сигналах.
- •Основные операции и элементы алгебры логики.
- •Основные теоремы алгебры логики.
- •Булевы функции (функции логики).
- •Для элемента "или-не"
- •Для элемента "и-не"
- •Минимизация булевых функций
- •Комбинационные устройства
- •Лекция 26. Последовательностные устройства (4часа)
- •Триггеры
- •Счетчики импульсов.
- •Регистры.
Импульсные устройства Лекция 23. Элементы импульсных устройств (4часа)
1.Общие сведения об импульсных сигналах
Кроме напряжения синусоидальной формы в практике электротехники и электроники применяются напряжения других форм. Наиболее широко применяется импульсное напряжение. Импульсным называется прерывистое во времени напряжение (сигнал) любой формы. Под формой сигнала понимается закон изменения во времени напряжения или тока.
Широкое применение импульсных сигналов обусловлено рядом причин. Сочетанием импульсов и пауз легко передавать дискретную информацию. Импульсный сигнал оказался единственно приемлемой формой при создании радиолокации, он необходим для работы систем синхронизации, удобен для управления многими производственными процессами.
Импульсы применяются и для передачи непрерывной информации. В этом случае передаваемая информация может содержаться в значениях амплитуды, длительности или временного положения импульсов. Наличие пауз между импульсами позволяет уменьшить мощность, потребляемую от источника питания. Кроме того, во время паузы можно передавать информацию от других корреспондентов.
Наиболее широко применяются импульсы прямоугольной, пилообразной экспоненциальной и колоколообразной формы (рис.15.1). Импульсы характеризуются:
-амплитудной Um;
-длительностью импульса u;
-длительностью паузы n;
-периодом повторения Т = u + n;
-частотой повторений F = 1/T;
-скважностью Qu = T/u.
В реальных устройствах прямоугольные импульсы характеризуются также длительностью фронта Фи срезаС. Фронт и срез определяют в течение нарастания или спада напряжения от 0,1Umдо 0,9Um.
Электронные ключи
Устройства, выполняющие обработку импульсных сигналов, называются импульсными устройствами. Среди различных импульсных устройств видное место занимают электронные ключи. Через идеальный разомкнутый ключ ток не протекает. Напряжение на идеальном замкнутом ключе равно нулю. Смена состояния ключа происходит под действием сигналов, подаваемых на один или нескольких входов.
Наиболее широкое применение в качестве электронных ключей нашел транзисторный каскад по схеме с ОЭ в классе усиления D(т.е. в ключевом режиме). Схема такого каскада приведена на рис. 15.2. В ключевом режиме транзистор может находиться в одном из двух состояний - в состоянии отсечки или в состоянии насыщения.
В состоянии отсечки ключ
разомкнут. Через транзистор протекает
только малый обратный ток Iкэо.
Напряжение на участке коллектор-эмиттер.
Мощность теряемая в транзистореРотс
=Iкэо
Uкмала,
так как мал ток.
Чтобы транзисторный ключ
находился в разомкнутом состоянии
необходимо подать на базу отрицательное
напряжение смещения, т.е.
.
Для этого часто применяют дополнительный
источник смещения -Есми
резисторR2(пунктир на рис.15.2) При таком включении
напряжение смещения создается двумя
источникамиЕсми источником
токаIкэо,
т.е.
.
(15.1)
Полагая Uб 0, получим:
,
откуда
.
(15.2)
Когда транзистор находится в состоянии насыщения, электронный ключ замкнут. Через транзистор протекает ток насыщения, значение которого ограничивается резистором Rк. Пренебрегая малым напряжением насыщения, можем записать:
.
(15.3)
Режим насыщения достигается при токе базы:
. (15.4)
Как и в режиме отсечки, мощность, теряемая в транзисторе в режиме насыщения, мала, потому что мало Uн.
Ток базы в режиме насыщения создают источники напряжения UВХиЕСМ. При этом участок база эмиттер транзистора можно считать закороченным. Поэтому
.
Условие насыщения (15.4) принимает вид
.
(15.5)
Выражение (15.5) позволяет определить необходимое значение R1.
В настоящее время электронные ключи выпускаются в микросхемном исполнении. Например, микросхема К564КТ3 содержит четыре двунаправленных ключа, предназначена для коммутации аналоговых и цифровых сигналов с током до 10 мА.