
- •Лекция 1(2 часа) элементы электрических цепей
- •1.Предмет и задачи дисциплины. Построение курса. Методика работы над учебным материалом.
- •2. Общие понятия и определения линейных электрических цепей (лэц).
- •Источники электрической энергии.
- •4.Приемники электрической энергии
- •5.Основные топологические понятия и определения
- •6.Закон Ома и Кирхгофа
- •Лекция 2 (2часа) Расчет электрических цепей постоянного тока. Правила Кирхгофа.
- •1. Пример: Решение задачи методом непосредственного применения законов Кирхгофа.
- •2. Метод контурных токов.
- •3. Метод узлового напряжения (применим только в цепи, имеющей два узла).
- •Лекция 3 (2часа) синусоидальный ток. Формы его представления.
- •1.Основные параметры синусоидального тока
- •2.Представление синусоидального тока (напряжения) радиус - вектором.
- •Комплексное изображение синусоидального тока.
- •Лекция 4 (2часа) комплексные сопротивления и проводимости элементов электрических цепей
- •1.Комплексное сопротивление
- •2.Комплексная проводимость
- •Лекция 5 (2часа) энергетические характеристики электрических цепей синусоидального тока
- •1.Мгновенная мощность цепи с rl и с элементами
- •Активная, реактивная, полная мощность
- •Применим к (5.19) (5.11), тогда
- •Выражение мощности в комплексной форме
- •Лекция 6 (2часа) резонансные свойства электрических цепей синусоидального тока
- •Резонанс токов
- •Резонанс напряжений
- •Лекция 7. (2часа) трехфазные электрические цепи Общие сведения о трехфазных линейных электрических цепях
- •1.Схемы соединения трехфазных цепей
- •2.Соотношение между линейными и фазовыми напряжениями и токами
- •3.Мощность трехфазной цепи
- •4. Пример расчета трехфазной электрической цепи.
- •Лекция 8. (2часа)
- •4. Действующие значения несинусоидальных I и u
- •Лекция 9. Нелинейные цепи (2часа) Нелинейные цепи постоянного тока
- •1.Методы анализа нелинейных цепей
- •II метод опрокинутой характеристики
- •Методы анализа разветвленных нелинейных цепей
- •2.Характеристика магнитных свойств ферромагнитных материалов
- •3.Магнитные цепи
- •4.Анализ магнитных цепей постоянного тока
- •5.Особенности физических процессов в магнитных цепях переменного тока
- •Лекция 11. Анализ и расчет магнитных цепей.
- •1. Построение вебер-амперной характеристики участка магнитной цепи
- •Анализ неразветвленных магнитных цепей
- •Анализ разветвленных магнитных цепей
- •Лекция 12. Электромагнитные устройства
- •1.Физические основы построения сварочного трансформатора
- •2.Физические основы ферромагнитных стабилизаторов
- •3.Принцип работы электромагнитных механизмов. Электромагнитные реле.
- •Лекция 13. (2часа) Трансформаторы
- •1.Общие сведения о трансформаторах
- •2.Принцип работы однофазных трансформаторов
- •Лекция 14. (2часа) Режимы работы трансформаторов
- •1.Опыт холостого хода трансформатора
- •2. Опыт короткого замыкания трансформатора
- •3.Внешняя характеристика трансформатора
- •4.Коэффициент полезного действия трансформатора
- •Лекция 15. (4часа) асинхронные машины
- •1. Общие сведения и конструкция асинхронного двигателя
- •2. Принцип образования трехфазного вращающегося магнитного поля
- •3. Принцип действия асинхронного двигателя
- •4. Магнитные поля и эдс асинхронного двигателя
- •5. Основные уравнения асинхронного двигателя
- •6. Приведение параметров обмотки ротора к обмотке статора
- •7. Векторная диаграмма асинхронного двигателя
- •8. Схема замещения асинхронного двигателя
- •9. Потери и кпд асинхронного двигателя
- •10. Уравнение вращающего момента
- •11. Механическая характеристика асинхронного двигателя
- •12. Рабочие характеристики асинхронного двигателя
- •13. Пуск, регулирование частоты вращения и торможение асинхронного двигателя
- •Лекция 16. Однофазные асинхронные двигатели
- •Двухфазный конденсаторный двигатель
- •Однофазный двигатель с явно выраженными полюсами
- •Использование трехфазного двигателя в качестве однофазного
- •Лекция 17. (2часа) синхронные машины
- •1. Конструкция и принцип действия синхронного генератора
- •2. Эдс синхронного генератора
- •3. Синхронный двигатель. Конструкция и принцип действия
- •4. Система пуска синхронного двигателя
- •5. Реактивный синхронный двигатель
- •6. Шаговый двигатель
- •Лекция 18 (4часа) Машины постоянного тока
- •7.1. Принцип действия и конструкция
- •7.2. Способы возбуждения машин постоянного тока
- •Зависимость вращающего момента на валу электродвигателя постоянного тока от силы тока в обмотке якоря.
- •Механическая характеристика электродвигателя постоянного тока.
- •7.3 Регулирование частоты вращения двигателей.
- •7.4. Эдс и электромагнитный момент генератора постоянного тока
- •7.5. Двигатель постоянного тока
- •7 Семестр
- •3. Магнитоэлектрическая система
- •4. Электромагнитная система
- •5. Электродинамическая система
- •6. Индукционная система
- •7. Измерение тока и напряжения
- •8. Измерение мощности
- •9. Измерение сопротивлений
- •10. Измерение неэлектрических величин электрическими методами
- •Лекция 20. Полупроводниковые приборы (4часа)
- •1.Классификация полупроводниковых электронных приборов
- •2. Типы проводимости полупроводниковых материалов. Электронно-дырочный переход. Основные параметры полупроводниковых диодов.
- •3. Биполярные транзисторы.
- •4. Полевые транзисторы
- •5. Тиристоры
- •Электронные устройства Лекция 21. Преобразователи напряжения (4часа)
- •Выпрямители
- •Сглаживающие фильтры
- •3.Стабилизаторы напряжения
- •Лекция 22 (4часа) резистивные усилители низкой частоты
- •Принцип работы каскада по схеме с общим эмиттером
- •2.Дифференциальный усилитель
- •Усилитель по схеме с общим коллектором
- •4.Операционный усилитель
- •Импульсные устройства Лекция 23. Элементы импульсных устройств (4часа)
- •1.Общие сведения об импульсных сигналах
- •Электронные ключи
- •Компараторы
- •Лекция 24. Генераторы импульсных сигналов (4часа)
- •1. Формирующие цепи
- •2. Мультивибраторы
- •Период повторения:
- •Скважность:
- •3. Генераторы линейно изменяющегося напряжения.
- •Если напряжение на входе оу постоянное, то получаем:
- •Напряжением открывается диодD1. На интеграторе начинается формирование линейно падающего напряжения. Напряжение uoc также линейно убывает и в момент t3 принимает значение:
- •Далее значение uглин периодически изменяется от –0,79 в до 3,2 в, а uос от –2,32 в до 4,31 в. Цифровые устройства Лекция 25. Введение в цифровую электронику (6часов)
- •Общие сведения о цифровых сигналах.
- •Основные операции и элементы алгебры логики.
- •Основные теоремы алгебры логики.
- •Булевы функции (функции логики).
- •Для элемента "или-не"
- •Для элемента "и-не"
- •Минимизация булевых функций
- •Комбинационные устройства
- •Лекция 26. Последовательностные устройства (4часа)
- •Триггеры
- •Счетчики импульсов.
- •Регистры.
10. Измерение неэлектрических величин электрическими методами
Широкое распространение измерения неэлектрических величии (температуры, угловых и линейных размеров, механических усилий и напряжений, деформаций, вибраций, химического состава и т.д.) электрическими методами обусловлено теми преимуществами, которыми они обладают по сравнению с другими методами. При этом создается возможность дистанционного измерения и контроля неэлектрических величин с одного места (пульта управления); измерения быстро изменяющихся неэлектрических величин; автоматизации управления производственным процессом. Обычно такие приборы состоят из датчика и измерительного устройства. В датчиках происходит преобразование неэлектрической величины в один из параметров электрической цепи (U, I, R и т.д.). Измерительное устройство - это один из электрических приборов, рассмотренных выше. Не имея возможности остановиться на каждом преобразователе, ограничимся лишь их кратким перечислением:
Реостатные преобразователи. Работают на изменении сопротивления реостата, движок которого перемещается под воздействием измеряемой неэлектрической величины.
Проволочные преобразователи (тензосопротивления). Их работа основана на изменении сопротивления проволоки при ее деформации.
Термопреобразователи (терморезисторы, термосопротивления). В них изменяется сопротивление датчика под воздействием температуры.
Индуктивные преобразователи. В них при изменении положения разъемных частей магнитопровода (например, под действием силы, давления, линейного перемещения) меняется индуктивность катушки.
Емкостные преобразователи. Могут быть использованы в качестве датчиков перемещения, влажности, химсостава воздуха и др.
Фотоэлектрические преобразователи. В них измерительный прибор реагирует на изменение освещенности, температура, перемещения и др.
Индукционные преобразователи. Работают на принципе преобразования неэлектрической величины (например, скорости, ускорения) в индуктированную ЭДС.
Термоэлектрические преобразователи. Основаны на возникновении термо ЭДС и ее зависимости от температуры.
9. Пьезоэлектрические преобразователи. Работают на принципе возникновения ЭДС при воздействии усилий на кристаллы некоторых материалов.
Лекция 20. Полупроводниковые приборы (4часа)
Электроника – это наука, изучающая принципы построения, работы и применения различных электронных приборов. Именно применение электронных приборов позволяет построить устройства, обладающие полезными для практических целей функциями – усиление электрических сигналов, передачу и прием информации (звук, текст, изображение), измерение параметров, и т.д.
Первый электронный прибор был создан в Англии в 1904 г. Это был электровакуумный диод, лампа с односторонней проводимостью тока. Очень быстро (за 30 лет) было разработано много типов электровакуумных приборов. Обладая достаточно высокими качественными показателями, они имели существенные недостатки: большие габариты, большую потребляемую мощность и малый срок работы. Эти недостатки серьезно мешали изготовлению сложных многофункциональных устройств.
В тридцатых годах началась интенсивная исследовательская работа по созданию полупроводниковых электронных приборов. За относительно короткий промежуток времени было создано такое многообразие полупроводниковых приборов, которое качественно позволило выполнить все функции электровакуумных приборов. А так как полупроводниковые приборы имеют малую потребляемую мощность, высокую надежность, малую массу и размеры, то уже к началу 70-х годов они практически полностью вытеснили электровакуумные электронные приборы. Большой вклад в развитие полупроводниковых электронных приборов внесли советские ученые Лосев, Френкель, Курчатов, Давыдов, Туркевич и многие другие.