- •2Вопрос
- •3. Цели и задачи метрологического обслуживания.
- •4. Силы и средства метрологического обслуживания.
- •6. Требования, предъявляемые к военной измерительной технике
- •7)Назначение, структурные схемы, достоинства и недостатки аналоговых и цифровых средств измерений.
- •10. Виды интерфейсов, используемых в измерительных системах
- •11. Общие сведения о массе. Классификация приборов и средств для измерения и дозирования массы.
- •1.1. Связь массы и веса тела
- •1.2. Эталон массы
- •2. Классификация приборов и средств для измерения и дозирования массы
- •2.1. Гири
- •Гири общего назначения
- •Гири специального назначения
- •12. Основные функциональные узлы, механизмы и детали весов. Основные технические характеристики. Основные мх весоизмерительных приборов
- •13. Общие сведения о давлении. Классификация методов и средств измерений давления.
- •14. Сущность методов измерений давления.
- •15. Назначение и основные технические характеристики деформационных манометров. Классификация чувствительных элементов.
- •16. Устройство и принцип действия деформационных манометров. Установка и обслуживание манометров.
- •17. Общие сведения о графическом способе градуировки средств измерений.
- •18. Общие сведения об аналитическом способе градуировки средств измерений.
- •19. Структура, этапы и сущность измерений.
- •20. Сущность прямых, косвенных, совместных и совокупных измерений.
- •21. Общие сведения о методе непосредственной оценки и методе сравнения с мерой.
- •22. Классификация средств измерений.
- •23. Методика выбора средств измерений для измерений параметров ввт.
- •24. Методика выбора средств измерений для контроля параметров ввт.
- •25. Общие сведения о мерах электродвижущей силы.
- •26. Общие сведения о мерах сопротивления.
- •27. Общие сведения о мерах ёмкости и индуктивности.
- •28. Классификация электроизмерительных приборов.
- •29. Основные узлы и принцип работы электроизмерительных механизмов.
- •30. Общие сведения о магнитоэлектрических механизмах.
- •31. Общие сведения об электродинамических механизмах.
- •32. Общие сведения об электростатических механизмах.
- •33. Общие сведения о приборах сравнения.
- •35. Стабилизированные и нестабилизированные источники токов и напряжений.
- •36. Калибраторы токов и напряжений.
- •37. Принцип действия вольтметров с времяимпульсным преобразованием.
- •38. Принцип действия вольтметров с частотоимпульсным и кодоимпульсным преобразованием.
- •39. Особенности измерений напряжения высокой частоты.(в лекциях и презентациях не нашёл нихера. Это из инета)
- •40. Назначение и классификация измерительных генераторов.
- •41. Функциональные элементы измерительных генераторов.
- •42. Особенности задающих генераторов
- •47. Общие сведения об измерении частоты. Классификация методов и средств измерений частоты.
- •48. Сущность конденсаторного и гетеродинного методов измерений частоты.
- •Принцип действия конденсаторного частотомера
- •49. Общие сведения об измерении фазового сдвига. Классификация методов и средств измерений фазового сдвига.
- •50. Сущность метода измерений фазового сдвига путём преобразования фазового сдвига во временной интервал.
- •Временной сдвиг между импульсами
- •Косвенное измерение фазового сдвига методом дискретного счета
- •Прямопоказывающий цифровой фазометр с реверсивным счетчиком
- •Осциллографический способ измерения фазовых сдвигов
- •51. Сущность компенсационного метода и метода амплифазометра.
- •52. Общие сведения о мощности. Классификация методов и средств измерений мощности.
- •Методы измерения, применяемые в диапазонах низких и высоких частот
- •3. Сравнение мощности исследуемого источника с мощностью постоянного тока или низкочастотного переменного тока. Калориметрический метод измерения мощности
- •Термоэлектрический метод измерения мощности
- •Измеритель проходящей мощности с термоэлементами
- •Пондеромоторный метод измерения мощности
- •Измерение импульсной мощности
- •Измерение мощности свч по напряжению на резисторе известного напряжения
- •53 Вопрос есть в 52.
- •55. Общие сведения об измерении временных интервалов. Классификация методов и средств измерений временных интервалов.
- •57. Классификация и основные характеристики электронных осциллографов. Обобщенная схема электронно-лучевого осциллографа.
- •59. Общие сведения об измерении параметров модулированных колебаний. Основные понятия и определения.
- •1. Виды аналоговой модуляции:
- •2.Виды цифровой модуляции:
- •3.Виды импульсной модуляции
- •60. Методы измерений параметров амплитудно-модулированных сигналов. Измерение коэффициента амплитудной модуляции.
- •61. Методы измерений параметров частотно-модулированных сигналов. Измерение девиации частоты.
- •64. Анализ спектра дисперсионным методом.
Измерение импульсной мощности
07.11.2011 | Комментариев нет
КОСВЕННЫЕ ИЗМЕРЕНИЯ.Ваттметры основных типов— терморезисторные, калориметрические, пондеромоторные и с термоэлементами — измеряют мощность в режиме непрерывной генерации или среднюю мощностьРсрв импульсном режиме.
Если известны форма и длительность τимпульсов, а также частота их следованияFcили скважностьQ, то по измеренному значениюPcpможно определить расчетным путем мощность в импульсе.
На прямоугольной форме импульсов, образующих периодическую последовательность, мощность в импульсе

Согласно «Схеме болометрического импульсного ваттметра»(см.ниже) случайная среднеквадратическая относительная погрешность косвенного измерения импульсной мощности
Погрешность
измерения средней за период мощности
получается тем меньше, чем больше
тепловая постоянная времени поглощающей
части ваттметра по сравнению с периодом
следования импульсов.
ПРЯМЫЕ ИЗМЕРЕНИЯ.Непосредственно измерить импульсную мощность можно ваттметром, показанным на рисунке ниже:
Схема болометрического импульсного ваттметра

Исследуемые радиоимпульсы поступают в болометрическую головку через направленный ответвитель, калиброванный по затуханию, основная линия которого, нагружена согласованной нагрузкой. Болометрвключен в цепь постоянного тока. Изменение его сопротивления является функцией температуры, которая определяется мощностью, поступающей на болометр.
Если тепловая постоянная времени болометра τб>>τии период следования импульсовТс>τб, тотемпература болометралинейно растет во время импульса и экспоненциально уменьшается в паузе между соседними импульсами.
Напряжение на выходе болометраимеет форму пилообразного импульса, наклон фронта которого — однозначная функция импульсной мощности. Болометр играет роль интегратора, преобразующего прямоугольный радиоимпульс в пилообразный видеоимпульс. Последний пропускается через дифференцирующую цепь, восстанавливающую форму прямоугольного импульса. На выходе дифференцирующей цепи получается видеоимпульс, точно соответствующий по форме огибающей радиоимпульса, подаваемого на болометр. Амплитуда видеоимпульса пропорциональна импульсной мощности СВЧ. Ее измеряютпиковым вольтметром, на входе которого включен видеоусилитель. Шкала вольтметра градуируется в единицах мощности.
В качестве примера измерителя малой импульсной мощности может быть назван болометрический ваттметр типа МЗ-12, работающий в диапазоне частот 0,1—3,1 Гц. Он содержит выносные головки типовМ5-33иМ5-34с проволочными малоинерционными болометрами (головки различаются по входному сопротивлению).
Более надежен (менее чувствителен к перегрузкам, чем болометрический ваттметр)электронный импульсный ваттметр.
Схема электронного импульсного ваттметра

Его принцип действия заключается в следующем:
Содержащийся в детекторной головке диод (например, типа 2А107А) детектирует радиоимпульсы исследуемого СВЧ генератора, поступающие на вход головки через аттенюатор.
Амплитуда видеоимпульсов, образующихся на выходе головки, однозначно соответствует измеряемому значению импульсной мощности. Это позволяет градуировать шкалу импульсного ваттметра в единицах мощности. В состав вольтметра входит калибратор— источник калиброванных по амплитуде импульсных сигналов.
