Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Иванов Обработка сигналов I.doc
Скачиваний:
42
Добавлен:
02.04.2015
Размер:
2.53 Mб
Скачать

4.3. Понятие оптимальности в условиях априорной неопределенности

Как уже отмечалось выше, в условиях априорной неопределенности величина среднего риска из-за неоднозначности задания P не определена, и сам принцип выбора оптимального решения по минимуму среднего риска становится нечетким, так как не­понятно минимум чего же нужно искать. Для того чтобы обсудить воз­можные в этих условиях принципы предпочтения при выборе решения, иными словами понятие оптимальности, рассмотрим поведение функцио­нала при различных из допустимого множества реша­ющих функций и P .

4.3.1. Равномерно наилучшее решение

Допустим, что для каждого фиксированного найден . Значение , при котором достигается этот минимум, то есть байесово правило решения, вообще говоря, зависит от , так что при изменении минимизирующее значение является функ­ционалом (рис. 4.1) и

. (4.3.1)

Если окажется, что минимум для всех P достигается при одном и том же (рис. 4.2), то существует равномерно наилучшее решение, которое и является абсолютно оптимальным, а априорная неопределен­ность не является существенной. Само равномерно наилучшее решение может быть найдено с помощью обычной байесовой процедуры.

Рис. 4.1. Область оптимальных байесовых правил решений при различных P

Рис. 4.2. Равномерно наилучшее правило решения

Следует отметить, что если ввести произвольную меру на мно­жестве P (не обязательно имеющую вероятностный смысл) и проинте­грировать средний риск по этой мере, определив таким образом новый функционал решающего правила

, (4.3.2)

а затем найти значение , минимизирующее этот функционал, то при существовании равномерно наилучшего решения это значение совпа­дает с , то есть .

Это означает, что в случае существования равномерно наилучшего правила решения можно произвольно усреднять средний риск (в част­ности, при параметрической априорной неопределенности вводить для неизвестных параметров и распределений вероятности х и , в свою очередь, более или менее произвольные распределения вероятности) и искать минимум этого усредненного значения. Подобного рода усредне­ние во многих случаях может существенно упростить задачу в отноше­нии техники отыскания оптимального правила решения благодаря большей простоте усредненного выражения.

4.3.2. Принцип асимптотической оптимальности

В практических задачах синтеза в условиях априорной неопреде­ленности часто характерно наличие большого объема данных наблюде­ния х, которые могут включать в себя (см. гл. 3) информацию о прошлом опыте, данные обучения, эмпирическую статистику и т. д. При этом в случае полного статистического описания значительная часть этих дан­ных оказалась бы избыточной, зато в условиях априорной неопределен­ности такая избыточность является в какой-то степени компенсацией за отсутствие четкого и полного статистического описания задачи. Поясним это на примере простой задачи двухальтернативного решения (или,или,,) на основа­нии данных наблюдения , образующих совокупность независимо распределенных величин. Пусть

(4.3.3)

где - некоторый параметр плотности вероятности .Статистическое описание (4.3.3) соответствует, например, случаю, когда фактически ре­шение должно быть принято на (n+1)-м шаге по результатам наблюде­ния , а предыдущая серия {} наблюдалась в условиях точно известной ситуации () и может рассматриваться в качестве обучаю­щей последовательности. Возможная априорная неопределенность в дан­ной задаче связана с незнанием параметра , из-за чего статистическое описание (4.3.3) становится неполным.

Если априорная неопределенность отсутствует - параметр извес­тен - оптимальное правило решения имеет вид (гл. 2): принимается , если

. (4.3.4)

Это правило, естественно, зависит только от , а все остальные дан­ные наблюдения являются избыточными. Если параметр неизвестен, то знание {} очень существенно, поскольку оно может быть использовано для уменьшения априорной неопределенности из-за неиз­вестности .

При этом по крайней мере интуитивно ясно, что чем больше объем подобных «избыточных» данных (в рассматриваемом примере этот объ­ем характеризуется числом наблюдений ), тем меньше влияние апри­орной неопределенности. Поэтому можно надеяться, что при увеличении объема и улучшения качества наблюдаемых данныххможно получить решение такого же качества, как если бы априорная неопределенность отсутствовала и распределениенам было бы известно точно. Отсюда логически вытекает принцип асимптотической оптимальности, который может быть сформулирован следующим образом:

- более предпочтительным является такое правило решения , для которого средний риск с увеличением объема данных наблюдения стремится к минимальному байесову риску для всехP равномерно.

Само правило решения , удовлетворяющее этому требованию, является асимптотически равномерно наилучшим решением, а при огра­ниченном, но большом объеме данных наблюдения х - приближенно равномерно наилучшим. Принцип асимптотической оптимальности имеет очевидный недостаток - он не определяет вполне однозначно и оставляет открытым вопрос, какое из асимптотически оптимальных пра­вил решения лучше при ограниченном объеме данных наблюдения. Однако столь же очевидна и его полезность - он позволяет отклонить как неудовлетворительные те правила, которые даже асимптотически су­щественно отличаются от оптимального байесова.