Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Толстов это все дал / GOST_R_50779_21-96.doc
Скачиваний:
79
Добавлен:
02.04.2015
Размер:
2.09 Mб
Скачать

Стандарт устанавливает процедуры и методы решения ряда практических задач статистики в случае, когда наблюдаемые величины являются случайными и распределены по нормальному закону

ГОСТ Р 50779.21-96

Государственный стандарт российской организации статистические методы

ПРАВИЛА ОПРЕДЕЛЕНИЯ И МЕТОДЫ РАСЧЕТА СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК ПО ВЫБОРОЧНЫМ ДАННЫМ

Часть 1. Нормальное распределение

ГОССТАНДАРТ РОССИИ

МОСКВА

Предисловие

1 РАЗРАБОТАН И ВНЕСЕН Техническим комитетом по стандартизации «Стандартизация статистических методов управления качеством» ТК 125

АО «Нижегородский научно-исследовательский центр контроля и диагностики технических систем» (АО НИЦ КД)

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 14 августа 1996 г. № 513

3 В настоящем стандарте учтены требования международного стандарта ИСО 2854-76 «Статистическое представление данных. Методы оценки и проверки гипотез о средних значениях и дисперсиях»

4 ВВЕДЕН ВПЕРВЫЕ

Содержание

1 область применения. 2

2 нормативные ссылки. 2

3 определения. 2

4 обозначения и сокращения. 3

5 общие требования. 4

6 точечное и интервальное оценивание математического ожидания генеральной совокупности. 5

7 точечное и интервальное оценивание дисперсии генеральной совокупности. 11

8 точечное и интервальное оценивание доли распределения случайной величины в заданном интервале. 14

Приложение а (справочное) Таблица значений функции стандартного нормального закона распределения. 22

Приложение б (справочное) Таблица значений квантилей распределения стьюдента. 24

Приложение в (справочное) Таблица значений квантилей c2-распределения. 25

Приложение г (справочное) Таблицы значений квантилей распределения фишера. 26

Введение

Стандарт устанавливает процедуры и методы решения ряда практических задач статистики в случае, когда наблюдаемые величины являются случайными и распределены по нормальному закону.

В стандарте изложены методы решения следующих задач:

а) точечного оценивания параметров нормального распределения случайной величины;

б) точечного оценивания вероятности попадания (доли распределения) случайной величины в заданный интервал и вне его;

в) интервального (доверительного) оценивания параметров и величин, указанных в подпунктах а и б;

г) проверки гипотез об этих же величинах.

Все приводимые процедуры используют ограниченный ряд статистических независимых наблюдений, полученных в производстве, в лабораторных условиях, при контроле, измерении, оценке и т. п.

Государственный стандарт российской федерации

Статистические методы

ПРАВИЛА ОПРЕДЕЛЕНИЯ И МЕТОДЫ РАСЧЕТА СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК ПО ВЫБОРОЧНЫМ ДАННЫМ

Часть 1. Нормальное распределение

Statistical methods. Determination rules and methods for calculation of statistical characteristics based on sample data. Part 1. Normal distribution

Дата введения1997-07-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Стандарт устанавливает методы, применяемые для:

- оценки математического ожидания и дисперсии генеральной совокупности;

- проверки гипотез относительно значений этих параметров;

- оценки вероятности попадания (доли распределения) случайной величины в заданный интервал.

Примечание - Вероятность попадания случайной величины в интервал равна доле распределения случайном величины в этом интервале. В большинстве практических задач физический смысл имеет понятие «доля распределения случайной величины в интервале», которое далее используют в данном стандарте.

Методы, изложенные в настоящем стандарте, применимы в том случае, если выполнены следующие условия:

- элементы выборки получены путем независимых повторений эксперимента. В случае конечной генеральной совокупности объем должен составлять не более 10 % объема генеральной совокупности;

- наблюдаемые переменные распределены по нормальному закону. Однако, если распределение вероятностей не сильно отличается от нормального, то описанные в стандарте методы остаются применимыми для большинства практических приложений. В этом случае объем выборки должен быть не менее 10, причем достоверность получаемых статистических выводов возрастает при увеличении объемов выборок.

Соседние файлы в папке Толстов это все дал