
- •1. Классификация и типы паровых котлов.
- •1.1. Паровой котел. Общее устройство и определения.
- •3.3. Общие технические характеристики топлив.
- •3.5.1. Характеристики твердого топлива.
- •3.5.2. Характеристики мазута.
- •3.5.3. Характеристики природного газа.
- •3.6.1. Размолоспособность топлива.
- •3.6.2. Тонкость размола пыли.
- •3.6.3. Затраты энергии на размол топлива.
- •3.6.4. Характеристика угольной пыли.
- •4.1. Основы кинетики химических реакций.
- •4.2.1. Горение газового топлива
- •4.2.2. Горение твердого топлива.
- •4.2.3. Горение жидкого топлива.
- •4.3. Развитие и воспламенение топливно-воздушной струи в топочном объеме.
- •4.4. Продукты сгорания топлива.
- •5.1. Введение.
- •5.2. Топочные камеры и горелки для сжигания твердых топлив.
- •5.3. Газомазутные топки и горелки.
- •6. Эффективность работы и основы теплового расчета котла.
- •6.1. Общее уравнение теплового баланса котла.
- •6.2. Коэффициент полезного действия парового котла и котельной установки.
- •6.3.1. Потери теплоты с уходящими газами.
- •6.3.2. Потери теплоты с химическим недожогом топлива.
- •6.3.3. Потери теплоты с механическим недожогом топлива.
- •6.3.4. Потери теплоты от наружного охлаждения.
- •6.3.5. Потери с физической теплотой удаляемых шлаков.
- •6.3.6. Оптимизация показателей работы парового котла по сумме тепловых потерь.
- •7. Эксплуатация паровых котлов.
- •7.1. Эксплуатационные режимы паровых котлов.
- •7.2. Статические характеристики парового котла в нерасчетных режимах работы.
- •7.3. Переходные процессы в котле при изменении нагрузки.
- •7.4.Регулирование температуры пара.
- •7.4.1. Методы парового регулирования температуры пара.
- •7.4.2. Методы газового регулирования.
- •7.5. Загрязнения и абразивный износ конвективных поверхностей нагрева.
- •7.6.1. Высокотемпературная коррозия.
- •7.6.2. Низкотемпературная коррозия.
- •7.7. Сокращение вредных выбросов в окружающую среду.
- •8.Характеристики и виды движения водного теплоносителя в паровых котлах
- •8.1.Водный теплоноситель в паровых котлах и его физико-химические характеристики.
- •8.2 Общие уравнения движения жидкости в трубах.
- •8.2.1.Уравнения неразрывности, движения, энергии и состояния жидкости.
- •8.2.2.Уравнение движения однофазного потока в трубах.
- •8.2.3.Уравнение движения двухфазного потока в трубах.
- •8.3.Режимы течения двухфазного потока.
- •8.4.Перепад давления при движении рабочей среды в трубе.
- •8.5.Виды движения жидкости.
- •9.Гидродинамика водного теплоносителя в паровых котлах.
- •9.1.Гидродинамика водного теплоносителя в поверхностях с принудительным движением.
- •9.1.1.Теплогидравлические характеристики поверхностей нагрева парового котла.
- •9.1.2.Гидравлическая характеристика горизонтальных одиночных труб.
- •9.1.3.Гидравлические характеристики вертикальных одиночных труб.
- •9.1.4.Гидравлические характеристики системы труб парового котла.
- •9.1.5.Гидравлическая разверка в системе труб парового котла.
- •9.1.6.Пульсация потока в системах труб парового котла.
- •9.2.Гидродинамика водного теплоносителя при естественной циркуляции.
- •9.2.1.Движущий и полезный напоры контура циркуляции.
- •9.2.2.Гидравлические характеристики контура циркуляции.
- •9.2.3.Расчет контуров циркуляции.
- •9.2.4.Показатели надежности работы контура циркуляции.
- •9.3. Организация сепарации влаги и пара в барабанных котлах.
- •9.3.1.Барабан - сепарационное устройство барабанного котла.
- •9.3.2.Гидродинамические процессы в барабане парового котла.
- •10. Температурный режим поверхностей нагрева паровых котлов.
- •10.1.Металл паровых котлов.
- •10.2.Расчет температурного режима обогреваемых труб парового котла.
- •10.3.Условия теплообмена на стенке прямолинейной части трубы парового котла.
- •10.3.1.Теплообмен при докритическом давлении водного теплоносителя.
- •10.3.2.Теплообмен при сверхкритическом давлении водного теплоносителя.
- •10.4.Особенности температурного режима горизонтальных труб, криволинейных труб и каналов и газоплотных экранов.
- •10.5.Влияние внутритрубных отложений на температурный режим обогреваемых труб парового котла.
- •11.Физико-химические процессы в пароводяном тракте парового котла.
- •11.1.Материальный баланс примесей в пароводяном тракте парового котла.
- •11.2.Коррозия металла в пароводяном тракте парового котла.
- •11.3.Растворимость примесей в водном теплоносителе.
- •11.4.Переход примесей из воды в насыщенный пар.
- •11.5.Внутритрубные отложения примесей водного теплоносителя.
- •11.6.Образование отложений примесей в пароводяном тракте прямоточного котла.
- •11.7.Образование отложений примесей в пароводяном тракте барабанного котла.
- •11.7.1.Удаление примесей с непрерывной продувкой воды из водяного тракта барабанного котла.
- •11.7.2.Организация ступенчатого испарения в барабанном котле.
- •12.Водно-химические режимы паровых котлов.
- •12.1.Водно-химические режимы и нормы качества пара и питательной воды.
- •12.2.Водно-химические режимы прямоточных котлов.
- •12.3.Водно-химические режимы барабанных котлов.
- •12.4.Влияние внутрибарабанных устройств на качество котловой воды и насыщенного пара.
- •12.5.Химические очистки паровых котлов.
- •12.6.Консервация паровых котлов.
10.3.2.Теплообмен при сверхкритическом давлении водного теплоносителя.
Особенностью среды при сверхкритическом давлении (СКД) является то, что переход от жидкой фазы к паровой происходит не скачкообразно (при постоянной температуре), что имеет место при докритическом давлении, а непрерывно с изменением температуры (см.гл.8).
В поверхностях нагрева с малым тепловым потоком коэффициент теплоотдачи α2при СКД изменяется по длине трубы аналогично изменению при докритическом давлении ((рис. 10.8), кривая I): в зоне жидкости α2≈ 8 кВт/(м2∙К); в зоне большой теплоемкости, где происходит изменение структуры воды, коэффициент α2резко возрастает, достигая наибольшего значения при температуре максимальной теплоемкости tмт, а затем уменьшается; в зоне пара (газа высокой плотности) a2≈ 4 кВт/(м2∙К), т.е. достаточно большой, но примерно в 2 раза меньше, чем в зоне жидкости.
При увеличении тепловой нагрузки (при ρw = const) максимум коэффициента теплоотдачи a2в зоне большой теплоемкости (ЗБТ) снижается (кривые 2,3), а затем (кривые 4,5) при определенном значении q коэффициент теплоотдачи при переходе к зоне большой теплоемкости уменьшается в несколько раз, т.е. наступает область ухудшенного теплообмена. Ухудшенный теплообмен не возникает скачкообразно, как при кризисе теплообмена в условиях до критического давления, но постепенный рост температуры стенки трубы может достигать ста градусов.
Изменение основных параметров среды (водного теплоносителя) по длине обогреваемой вертикальной трубы при СКД показано на рис. 10.9. На вход трубы подается вода с температурой tвх< tмт, энтальпией hвх<hмт, расход воды G, кг/с, массовая скорость ρw, кг/(м2 ∙ с).
При постоянной плотности теплового потока qвнпо длине трубы средняя (балансовая) энтальпия потока hплинейно растет по высоте (длине) трубы. В каком-то сечении A hпбудет равна энтальпии воды hмт, при которой средняя температура потока tп= tмт(но температура турбулентного ядра потока tябудет еще меньше tмт, а температура пристенного слоя толщиной sпр- больше tмт).
Изменение температуры потока tппо длине трубы не будет линейным: на начальном участке (в зоне жидкости) теплоемкость сp(рис. 8.2) изменяется мало и график tпэквидистантен графику hп; в зоне большой теплоемкости температура tпизменяется значительно медленнее, чем hп; в паровой области теплоемкость постепенно снижается при увеличении hпи температура потока tпрастет более быстро, чем hп.
В зоне жидкости при h < 1000…1200 кДж/кг (до сечения II- II, (рис. 10.9) теплофизические характеристики воды (λ, ρ, cр, μ и др.) мало зависят от температуры, и, следовательно, их изменение по радиусу трубы будет незначительным. В этих условиях коэффициент теплоотдачи α2от стенки к среде рассчитывается по формуле (10.19).
Аналогичные условия имеют место в ЗБТ при низких тепловых потоках, когда температура среды по радиусу трубы изменяется незначительно. Расчет по формуле (10.19) в этом случае дает такое же значение α2, как показано на (рис. 10.8). Температура стенки при этом близка к температуре потока ((рис. 10.9), кривая 7). Режим течения с более высоким значением α2называют режимом улучшенного теплообмена в ЗБТ.
С увеличением плотности теплового потока интенсивность теплообмена в ЗБТ и изменение температуры tст по длине трубы имеют качественно другой вид ((рис. 10.9), кривая 2). При высоких тепловых потоках значительно изменяется температура среды по радиусу трубы, что приводит к резкому изменению свойств воды в сечении трубы (особенно вблизи стенки). В зависимости от соотношения теплового потока и массовой скорости могут возникнуть как ухудшенные, так и улучшенные условия теплообмена.
При расчете коэффициента теплоотдачи в поверхностях нагрева, работающих в ЗБТ (НРЧ, СРЧ, ВРЧ) в области энтальпии потока 1000…2600 кДж/кг используется расчетно-графический способ - определяют начальное изменение α2cпри h = 840 кДж/кг (200 ккал/кг) из критериальной зависимости
|
(10.24) |
По графику рис.10.10 определяют коэффициент А, учитывающий влияние теплового потока qвн, кВт/м2, и массовой скорости ρw, кг/(м2∙с), на коэффициент теплоотдачи в ЗБТ. В результате получают окончательное выражение.
Рисунок 10.10 построен по справочным данным и показывает, при каких сочетаниях параметров qвн, ρwи энтальпии потока hпвозможен улучшенный или ухудшенный режим теплообмена. При (qвн/ρw) ≤ 0,42 коэффициент А > 1 во всей ЗБТ.
С повышением значения параметра qвн/ρw(увеличение теплового потока или уменьшение массовой скорости) коэффициент А уменьшается и в конце ЗБТ становится меньше 1. При значениях (qвн/ρw) ≤ 0,7 не наблюдается резкого роста температуры стенки трубы, а при (qвн/ρw) > 0,7 имеет место явно выраженный режим ухудшенного теплообмена из-за уменьшения α2. Следовательно, при расчете поверхностей нагрева параметр qвн/ρwдолжен быть меньше 0,7.
В нормативном методе гидравлического расчета котельных агрегатов рекомендуется принимать для НРЧ массовые скорости: при сжигании мазута ρw= 500 (кг/м2∙с), угля ρw= 2000(кг/м2∙с), газа ρw = 1500 (кг/м2∙с).
При сжигании мазута тепловой поток на внутренней поверхности трубы qвндолжен быть не более 800 кВт/м2. Если при этом ρw= 2500 (кг/м2∙с), то α2н= 18,3 (кВт/м2∙К), параметр qвн/ρw= 0,32, коэффициент А = 1,5 (для hвых= 2000…2300), α2= 18,3∙1,5 = 27,5 (кВт/м2∙К). Разность температур Δt = tствн - tн= 800/27,5 = 29°C. При tп= 390…400° С значение температуры внутренней поверхности стенки составит tствн= 420…430°С. Но при таком высоком тепловом потоке приращение температуры по толщине стенки Δtмбудет большим (70…130°С) и велика вероятность образования внутритрубных отложений. Поэтому значение температуры на наружной стенке будет не менее tстн= 500…550°С.
В области энтальпии потока свыше 2600 кДж/кг (за пределами ЗБТ) расчет коэффициента теплоотдачи α2ведется по тем же формулам, что и в зоне перегретого пара при докритическом давлении.
Пароперегревательные поверхности котлов СКД выполняются: в виде радиационных поверхностей, расположенных в верхней части топки и горизонтальном газоходе ρw= 1000…1500(кг/м2∙с); полурадиационных ширм ρw= 1000…1600 (кг/м2∙с); конвективных пакетов ρw= 1000…1600(кг/м2∙с). Коэффициент теплоотдачи α2при этом должен быть не менее 4…6 (кВт/м2∙К).
В промежуточный (вторичный) пароперегреватель пар поступает после ЦВД турбины при давлении 3,6…4 МПа, температуре 290…320°С и перегревается до 545…570°С. По условиям экономичности применения вторичного перегрева пара гидравлическое сопротивление промежуточного пароперегревателя не должно быть выше 0,2 МПа. Массовую скорость пара в первой ступени промперегревателя принимают ρw= 250 (кг/м2∙с), при этом α2≈ 1 (кВт/м2∙К), в выходной ступени ρw= 300…350 (кг/м2 ∙с) и a2≈ 1,2…1,4 (кВт/м2 ∙К).
Учитывая относительно низкую эффективность теплоотдачи α2, вторичный пароперегреватель располагают в зоне невысоких тепловых потоков, но даже при этом выходные пакеты его приходится выполнять из легированной стали перлитного или аусте-нитного класса.
Интенсивность теплообмена в области жидкости и пара при сверхкритическом давлении не зависит от направления потока в вертикальной трубе (подъемное или опускное); в ЗБТ при опускном движении в обогреваемой трубе силы естественной конвекции турбулизируют поток и интенсивность теплоотдачи растет, режимы с ухудшенным теплообменом не возникают. Поэтому с точки зрения обеспечения нормального теплообмена в ЗБТ можно выполнять вертикальные поверхности нагрева с подъемным и опускным движением среды, однако участки с опускным движением приводят к снижению надежности работы (см. гл.9).