
- •Пташкина-Гирина о.С., Щирый в.Д. Гидравлика
- •Челябинск
- •Введение
- •Раздел 1 Гидравлика
- •Силы, действующие в жидкости
- •2. Физические свойства жидкости
- •2.1. Плотность и удельный вес жидкости
- •2.2. Сжимаемость жидкости
- •2.3. Температурное расширение жидкости
- •2.4. Вязкость жидкостей
- •3. Гидростатика
- •3.1. Свойства гидростатического давления
- •3.2. Дифференциальные уравнения равновесия жидкости (уравнения Леонарда Эйлера)
- •3.3. Основное уравнение гидростатики. Эпюры гидростатического давления
- •3.4. Сила гидростатического давления на плоские поверхности
- •3.5. Сила гидростатического давления, действующая на криволинейные поверхности
- •3.6. Закон Архимеда. Основы теории плавания
- •3.7. Гидростатические машины и механизмы
- •4. Гидродинамика
- •4.1. Основные понятия
- •4.2. Уравнение неразрывности (сплошности)
- •4.3. Уравнение д.Бернулли для элементарной струйки идеальной жидкости. График уравнения д.Бернулли
- •4.4. Уравнение д.Бернулли для элементарной струйки реальной жидкости. График уравнения д.Бернулли
- •4.5. Уравнение д.Бернулли для потока реальной жидкости
- •5. Определение гидравлических потерь
- •5.1. Классификация потерь напора
- •5.2. Основное уравнение равномерного движения
- •5.3. Формулы для определения гидравлических потерь
- •5.4. Режимы движения жидкости. Критерий рейнольдса
- •5.5. Особенности ламинарного режима движения жидкости
- •5.6. Особенности турбулентного режима движения жидкости
- •5.7. Влияние режима движения жидкости и шероховатости на величину коэффициента трения в трубах (график Никурадзе)
- •6. Гидравлический расчет трубопроводов
- •6.1. Классификация трубопроводов
- •6.2. Расходная характеристика трубопровода (модуль расхода)
- •6.3. Гидравлические характеристики трубопроводов
- •6.4. Равномерный путевой расход
- •6.5. Гидравлический удар в трубопроводах. Гидравлический таран
- •7. Истечение жидкости из отверстий и насадков
- •7.1. Истечение жидкости из малого отверстия в тонкой стенке
- •7.2. Истечение жидкости через насадки
- •8. Гидравлическое моделирование
- •8.1. Сущность моделирования
- •8.2. Основные законы гидродинамического подобия. Критерий подобия Ньютона
- •8.3. Критерий подобия Рейнольдса, Фруда, Эйлера, Вебера
- •Раздел 2 Гидравлические машины
- •9. Насосы
- •9.1. Классификация насосов
- •9.2. Основные параметры насосов
- •9.2.1. Напор, развиваемый насосом
- •9.2.2. Мощность и кпд насоса
- •9.3. Область применения насосов
- •10. Динамические насосы
- •10.1. Центробежные насосы
- •10.1.1. Схема устройства и принцип действия
- •10.1.2. Основное уравнение центробежного насоса
- •10.1.3. Подача центробежного насоса
- •10.1.4. Теоретические характеристики центробежного насоса
- •10.1.5. Действительная характеристика центробежного наоса
- •10.1.6. Универсальные характеристики центробежного насоса
- •10.1.7. Процесс всасывания и явление кавитации в центробежном насосе
- •10.1.8. Законы пропорциональности центробежного насоса
- •10.1.9. Работа центробежного насоса на сеть
- •10.1.10. Регулирование работы центробежного насоса
- •10.1.11. Совместная работа центробежных насосов
- •10.1.12. Центробежные насосы специального назначения
- •10.2. Насосы трения
- •10.2.1. Вихревые насосы
- •10.2.2. Струйные насосы
- •10.2.3. Воздушные насосы
- •10.2.4. Шнековые насосы
- •10.2.5. Дисковые насосы
- •10.2.6. Лабиринтные насосы
- •10.2.7. Вибрационные насосы
- •11. Объемные насосы
- •11.1. Возвратно-поступательные насосы
- •11.2. Роторные насосы
- •Раздел 3 гидравлическиЙ привод
- •12. Классификация
- •13. Объемный гидропривод
- •13.1. Функциональная схема
- •13.2. Принципиальная схема гидропривода
- •13.3. Область применения объемных гидроприводов
- •13.4. Достоинства и недостатки объемных гидроприводов
- •13.5. Требования к рабочей жидкости
- •13.6. Объемный гидропривод возвратно-поступательного движения
- •13.7. Принцип расчета гидропривода
- •13.8. Объемный гидропривод вращательного движения
- •13.9. Регулирование скорости гидропривода
- •13.9.1. Объемное регулирование
- •13.9.2. Дроссельное регулирование
- •13.10. Следящий гидропривод
- •14. Гидролинии, гидроемкости, фильтры
- •Раздел 4 сельскохозяйственное водоснабжение
- •15. Системы водоснабжения. Классификация.
- •Слово о воде
- •16. Водоснабжение из поверхностных источников
- •17. Водоснабжение из подземных источников
- •18. Водонапорные и регулирующие устройства
- •19. Требования, предъявляемые к качеству хозяйственно–питьевой воды. Методы улучшения качества воды
- •20. Основные данные для проектирования водопроводной сети
- •Раздел 5 Водоотведение
- •21. Основы канализации
- •22. Уловители нефтепродуктов
- •Литература
- •Содержание
9.3. Область применения насосов
С целью того, чтобы сузить поиск необходимого насоса для той или иной цели рассмотрим область применения различных групп насосов согласно классификации, в зависимости от их основных параметров: подачи Q и напора Н.
Если говорить о возможной подаче, то по мере ее увеличения насосы располагаются в следующем порядке (рис.9.5): объемные, центробежные и осевые. Если же в качестве определяющего параметра рассматривать максимально возможное значение напора, то порядок будет обратным. Что касается насосов трения, то все они в поле Н - Q занимают области, прилегающие к осям координат и характеризуемые малыми значениями либо напора, либо подачи. Таким образом, практически весь диапазон напоров от 1 до 10000 м и подача от нескольких литров до 150000 м3/ч перекрывается большим числом типоразмеров хорошо освоенных промышленностью насосов.
.
Рис. 9.5
10. Динамические насосы
Из этой группы насосов более подробно изучаются центробежные насосы, входящие по классификации в подгруппу лопастных насосов, поэтому определению «центробежный насос» должны предшествовать определения «Динамический насос» и «Лопастной насос» согласно ГОСТ 17398-72.
10.1. Центробежные насосы
10.1.1. Схема устройства и принцип действия
Динамический насос – это насос, в котором жидкая среда перемещается под силовым воздействием на нее в камере, постоянно сообщающейся с входом и выходом насоса.
Лопастной насос – это динамический насос, в котором жидкая среда перемещается путем обтекания лопасти.
Центробежный насос – это лопастной насос, в котором жидкая среда перемещается через рабочее колесо от центра к периферии.
На основании приведенных определений составим в простейшем виде схематически конструкцию этого насоса (рис.10.1) консольного типа.
На вал 1 насажено рабочее колесо 2, вращающееся внутри корпуса 3. Рабочее колесо состоит из двух дисков (переднего и заднего), соединенных в единую конструкцию лопастями 4. Лопасти отогнуты плавно в сторону, противоположную направлению вращения колеса. Передний диск имеет отверстие для подвода жидкости, задний – втулку для крепления колеса на валу. Поток входит в насос в осевом направлении, выходит - в радиальном. На входе в корпус крепится всасывающий патрубок, на выходе – нагнетательный.
Рабочее колесо с корпусом образуют спиральную камеру 5, которая затем плавно переходит в короткий диффузор, образующий напорный патрубок, соединяемый с напорным трубопроводом. Между валом и корпусом предусмотрено уплотнение 6.
Рис.10.1
Рассмотрим принцип действия центробежного насоса (рис.10.1). Так как вход и выход этого насоса между собой постоянно сообщаются, то насос принципиально не способен создать достаточное разрежение для его заполнения жидкостью, поэтому перед пуском насоса в работу последней должен быть заполнен перекачиваемой жидкостью. Для возможности заполнения во всасывающей трубе для малых насосов предусматривается обратный клапан 7, а для более крупных, в которых клапаны отсутствуют, – вакуумирование.
При вращении рабочего колеса на каждый объем жидкости, находящейся в межлопастном канале, действует центробежная сила, под действием которой жидкость выбрасывается из рабочего колеса в спиральную камеру; так как жидкость является сплошной средой без пустот и переуплотнений, то начиная с центра рабочего колеса, жидкость перемещается непрерывными потоками в межлопаточных пространствах, наращивая в основном кинетическую энергию, которая сначала в спиральной камере, затем в диффузоре превращается в потенциальную энергию, т.е. растет давление.