Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Lektsia_11_Genetika_3

.doc
Скачиваний:
102
Добавлен:
31.03.2015
Размер:
157.7 Кб
Скачать

5

Конспект лекции № 11.

Тема. Изменчивость. Виды изменчивости. Популяционная генетика.

Классификация изменчивости

┌─────────────────────────────────────────┐

изменчивость │

└──────────────────┬──────────────────────┘

┌────────────────┴───────────────┐

┌────────┴─────────┐ ┌─────────────┴──────────────────┐

фенотипическая │ │ генотипическая │

└────────┬─────────┘ └─────────────────┬──────────────┘

┌────┴──────┐ ┌───────┴────┐

┌───┴─────┐ ┌───┴───────────┐ ┌───────┴──────┐ ┌───┴─────────┐

случайная│ │модификационная│ │ генеративная │ │соматическая │

└─────────┘ └───────────────┘ └───────┬──────┘ └──────┬──────┘

┌────────────────────┬───┘ │

┌───────────┴───────┐┌───────────┴─────────┐

комбинативная ││ мутационная │

└───────────────────┘└────────┬────────────┘

┌─────────────────────┴─┬─────────────┐

┌────────┴─────────────┐┌────────┴──────┐┌─────┴─────────────┐

геномная ││ хромосомная ││ генная (точковая) │

└───────────┬──────────┘└───────────┬───┘└───────────────────┘

┌──────┴───────┐ │

┌────┴────────┐┌────┴─────┐ ┌──┴──────────────┐

изменение ││изменение │┌─────┴────────┐┌───────┴─────────┐

числа наборов││числа ││межхромосомная││внутрихромосомная│

хромосом (ге-││отдельных ││(транслокации)││(делеции, дупли- │

номов) ││хромосом ││ ││кации, инверсии) │

└─────┬───────┘└──────┬───┘└──────────────┘└─────────────────┘

┌─┴──────┐ └──┬──────────┐

┌───┴─────┐┌─┴─────────┐┌┴────────┐┌┴─────────────────────────┐

гаплоидии││полиплоидии││моносомии││полисомии(трисомии, тетра-│

└─────────┘└───────────┘└─────────┘│сомии, пентасомии и т. д.)│

└──────────────────────────┘

Если наследственность обеспечивает единообразие общего плана строения, развития и жизнеобеспечения, то изменчивость – это свойство, определяющее разнообразие деталей анатомии и физиологии конкретных особей.

Биологический смысл изменчивости – создание материала для естественного отбора тех особей, которые обладают способностью выживать и размножаться в конкретных условиях существования.

Фенотипическая изменчивость возникает под влиянием на организм среды обитания. При этом наследственный материал не затрагивается. Если фактор внешней среды, вызывающий проявление признака известен, то эту изменчивость называют модификационной. Так, если у кролика русской горностаевой породы выбрить участок кожи на спине и поместить животное на холод, то оголенное место зарастает темной шерстью. При обычной температуре растет белая шерсть. Если фактор среды, вызывающий изменчивость не ясен или изменения вызываются при совместном действии нескольких факторов, то такую изменчивость называют случайной. В ряде случаев возникает фенокопия – фенотипическая изменчивость, которая выглядит как генетическая наследственная болезнь. Так, один из 300 новорожденных мальчиков имеет гипоспадию - порок развития мужской половой системы, при которой происходит смещение наружного отверстия мочеиспускательного канала с головки полового члена на основание. Причина этого феномена может быть связана с генетическим дефектом, но возможна и при нарушении внутриутробного развития под влиянием факторов внешней среды, т.е. является фенотипической изменчивостью.

Генотипическая изменчивость связана с нарушениями наследственного материала.

Если изменяется наследственный материал соматических клеток, не принимающих участия в размножении организма, то изменения фенотипа данной особи не передаются потомкам. Такую генотипическую изменчивость называют соматической. Как правило, причиной этой изменчивости являются мутации соматических клеток. Примером соматической изменчивости может служить односторонняя гинекомастия – увеличение одной грудной железы у мужчин (часть соматических клеток теряет Y-хромосому). Опухолевые заболевания также связывают с соматической генетической изменчивостью.

Если изменяется наследственный материал половых клеток, зигот и клеток раннего этапа внутриутробного периода развития, то изменения фенотипа проявляются у потомков данной особи. Такую генотипическую изменчивость называют генеративной. Генеративная изменчивость может быть следствием воздействия на организм мутагенных факторов (мутационная изменчивость) или быть следствием нормального процесса случайной перетасовки генетического материала (комбинативная изменчивость).

Мутационный процесс может быть на уровне отдельных генов и нуклеотидов (генные точковые мутации), на уровне отдельных хромосом (хромосомные мутации) и на уровне генотипа (геномные мутации).

К генным точковым мутациям относят вставки, замещения, выпадения и инверсии (вращения) отдельных нуклеотидов или их групп, что может приводить к нарушению аминокислотных последовательностей белков.

Хромосомные мутации или аберрации могут быть "внутренним делом" конкретной хромосомы – это внутрихромосомные мутации. При этом происходят процессы, сходные с точковыми мутациями, но изменениям подвергаются крупные участки хромосом. Виды внутрихромосомных мутаций (см. рис. 2): делеции (аналог выпадения нуклеотидов), дупликации (аналог удвоения), инверсии (аналог инверсии нуклеотидов).

Рисунок 2. Внутрихромосомные мутации.

А │А │А │А │А │А │А │А │А │А

В │В │В │В │В │В │В │D ─┐ │В │В

* * * * * * * │C │ * *

С │С │С │С │С │С │С * │ │С │С

D │D │D │D │D │D │D │В ─┘ │D │E ─┐

E │E │E │E │E │E │E │E │D ─┘

F │F │F │E │F │E │F │F │F │F

исходная │F │F

пара делеция дупликация две инверсии (показаны

хромосом участки вращения)

Следует обратить внимание на то, что при инверсиях нет нарушения количества генетического материала в хромосоме, а изменение фенотипа зависит от "эффекта положения" гена. Если в хромосомной аберрации принимают участие негомологичные хромосомы, то говорят о межхромосомных мутациях (транслокациях) (см. рис. 3).

Рисунок 3. Механизм межхромосомной мутации

А │А ┐ │J │J │А <───────┐

В │В ┘─┐ │K │K │В │

* * │ * * * │

С │С │ │O │O ┐ │O │

D │D │ │P │P ├────┐ │P <─────┐ │

E │E │ │R │R │ │ │R │ │

F │F │ │T │T ┘ │ │T │ │

│ └────────────────────┘ │

└──────────────────────────────────────────┘

первая исходная вторая исходная транслокация

пара хромосом пара хромосом

Следствием хромосомных перестроек могут быть тяжелые заболевания, например, повторные спонтанные аборты или транслокационная форма синдрома Дауна.

Третий вид мутационной генеративной изменчивости – геномные мутации. Различают изменения числа геномов и изменения числа отдельных хромосом (анэуплоидия).

При изменении числа геномов, вместо нормального двойного или диплоидного набора хромосом, наблюдается гаплоидия – одинарный набор хромосом в соматических клетках. Гаплоидия у людей не известна, что связано с ранней гибелью эмбриона с таким генотипом, но в эксперименте получены гаплоидные тритоны с пониженной жизнеспособностью. При полиплоидии отмечается количество хромосомных наборов больше двух (триплоидия-3, тетраплоидия-4 и т. д.). Полиплоидные зародыши человека обнаружены при исследовании материала, полученного при абортах (выкидышах). Описаны единичные случаи рождения три- и тетраплоидных детей, которые имели многочисленные уродства, а продолжительность их жизни варьировала от 15 минут до 7 суток.

Изменение количества отдельных хромосом или анэуплоидии проявляются в форме моносомий и полисомий (трисомии, тетрасомии, пентасомии и т. д.).

Моносомии характеризуются утратой зиготой одной хромосомы. У человека, по-видимому, только одна моносомия – синдром Шерешевского-Тернера (одна половая Х-хромосома) совместима с жизнью. Фенотипически больные с синдромом Шерешевского–Тернера – женщины, невысокого роста, с недоразвитием половых признаков. Имеются специфические складки кожи на шее. Интеллект страдает в 50% случаев. При микроскопии в ядрах клеток не обнаруживаются тельца Барра. Кариограмма показывает 45 хромосом.

Трисомии встречаются чаще. Их делят на аутосомные и половые.

Наиболее известна аутосомная трисомия - трисомическая форма синдрома Дауна (третья - лишняя хромосома 21 пары). Больные обоего пола и любой расовой принадлежности похожи друг на друга имеют специфические особенности лица, но основной дефект их развития- олигофрения (слабоумие), которая выраженна с различной экспрессивностью.

Примером половых трисомий являются люди с синдромами Кляйнфельтера (ХХY), сверхженщины (ХХХ), супермена (XYY).

При синдроме Кляйнфельтера фенотип мужской, наблюдается высокий рост при астеническом телосложении, а с возрастом склонность к ожирению. У больных нарушен сперматогенез, наблюдается снижение интеллекта. При микроскопии в ядрах клеток обнаруживаются тельца Барра. Кариограмма показывает 47 и более, хромосом.

Супермены отличаются ростом выше среднего, слабоумием и агрессивностью, бесплодием. Чем больше лишних Y хромосом те больше выраженность патологии.

Сверхженщины имеют 2 и более тельца Барра в ядрах, чем больше у них лишних X хромосом тем более варажено нарушение в половой сфере и интеллект. При микроскопии в ядрах клеток обнаруживаются лишние тельца Барра. Кариограмма показывает 47 и более, хромосом.

Механизм возникновения анэуплоидий связан с нарушением мейоза, в частности, расхождения хромосом к полюсам клетки. Если к одному из полюсов будущей гаметы человека отойдет не 23, а 22 хромосомы, то другой половине достанется 24. При слиянии таких гамет с нормальной гаметой (23 хромосомы) в первом случае возникнет моносомия (22+23=45), во-втором трисомия (24+23=47) (рис. 4.).

Рисунок 4. Нарушения мейотического деления с формированием моно- и трисомии

│ │

исходная │ │ │ │ исходная

клетка в ┌─> * * ──┐ ┌── * * │<─┐ клетка в

процессе │ │ │ │ │ │ │ * │ процессе

гамето- │ │ │ │ ││ │ │ │ │ │ гамето-

генеза │дефектная│ ││ ││ │ нормаль- │ генеза

││ │ гамета: │ ** ** │ │ ная гаме-│ ││

││ ││ │нет хро- └> ││ ││ * <┘ та │ ││ ││

** ** ││ ──┤мосомы №3 ││ ││ │ ├── ** ** ││

││ ││ ** │ зигота │ ││ ││ **

││ ││ ││ │ │ моносомия │ │ ││ ││ ││

1 2 3 │ │ │ │ │ │ 1 2 3

└─> * * ││ ─┐ ┌─ * * │<─┘

│ │ ** │ │ │ │ *

│ │ ││ │ ││ │ │ │ │

дефектная │ ││ ││ │ нормаль-

гамета: └> ** ** │││ <┘ ная гаме-

лишняя хро- ││ ││ *** та

мосома №3 ││ ││ │││

зигота

трисомия

Популяционная генетика.

Популяция – это группа организмов одного вида, которая обычно обитает на четко ограниченной территории. Общая генетическая реакция всей популяции определяет ее выживание и является предметом изучения популяционной генетики.

Знание основных законов популяционной генетики позволяет понять механизмы адаптивной изменчивости видов, помочь разобраться в практических вопросах медико-генетического консультирования людей и даже осмыслить ряд мировоззренческих проблем.

Любознательных студентов иногда смущает вопрос: если аллельные гены карих глаз доминируют над генами голубых глаз, почему не исчезают голубоглазые люди? Математическое доказательство этого факта впервые сформулировали независимо друг о друга Харди и Вайнберг в 1908 году.

Каждый ген может существовать в нескольких различных формах, которые называют аллелями. Число организмов популяции, несущих определенный аллель, определяет частоту данного аллеля (частоту гена). Например, ген, определяющий возможность пигментации кожи, глаз и волос у человека в 99% случаев представлен "нормальным" аллелем. Второй возможный вариант этого гена - аллель альбинизма, который делает отложение пигмента невозможным. Его частота 1%. В математике частоту аллелей выражают не в процентах, а в частях (чаще десятичных) от единицы. В данном примере частота доминантного - нормального аллеля будет равна 0,99, а частота рецессивного аллеля альбинизма 0,01. При этом сумма частот аллелей всегда равна единице ( 0,99 + 0,01 =1 ). Генетика заимствовала у математической теории вероятностей символы "p"-для обозначения частоты доминантного аллеля и "q"-для частоты рецессивного аллеля. В приведенном примере с пигментацией у человека p+q = 1 (уравнение вероятностей)

0,99+0,01 = 1

Значение этого уравнения в том, что, зная частоту одного аллеля, можно найти частоту другого:

p=1-q – частота доминантного аллеля;

q=1-p – частота рецессивного аллеля.

Например, если рецессивный аллель имеет частоту 5% или q=0,05, тогда доминантный аллель будет иметь частоту p=1-0,05=0,95 или 95%. Следует обратить внимание, что частота аллелей – это не частота проявления признака в фенотипе, которая зависит от сочетания в генотипе 2 аллелей.

Для двух аллелей с полным доминированием (цвет семян гороха) возможны 3 генотипа: АА, Аа, аа и 2 фенотипа: 1-доминантный желтый (АА, Аа); 2-рецессивный зеленый (аа). Таким образом, одинаковые по фенотипу особи могут не совпадать по генотипу. Закон Харди-Вайнберга утверждает: частоты доминантного и рецессивного аллелей разных поколений идеальной популяции постоянны (идеальной можно назвать изолированную популяцию больших размеров, без новых мутаций, где спаривание происходит случайно, все генотипы одинаково плодовиты, а поколения не перекрываются). Этот закон можно выразить в уравнении Харди-Вайнберга

p2 + 2pq+q2=1, где

p2 -частота доминантных гомозигот (АА)

2pq -частота гетерозигот (Аа)

q2 -частота рецессивных гомозигот (аа)

Такое распределение возможных генотипов связано со случайным характером распределения гамет в процессе мейоза и основано на теории вероятностей, математически представляет собой квадрат уравнения вероятностей p+q=1 (уравнение вероятностей), (p+q)2=12; (p+q)(p+q)=1;

p2 + 2pq+q2=1 (уравнение Харди-Вайнберга)

Имея два уравнения для вероятностей частоты аллельных генов и наблюдая частоту рецессивных гомозигот (q2), можно вычислить число гетерозигот (2pq) – носителей скрытых генов и частоты аллельных генов (p-доминантного и q-рецессивного).

Пример решения задачи популяционной генетики.

Дано: один альбинос (аутосомно-рецессивный тип наследования) приходится на 10000 людей с нормальной пигментацией.

Найти: на сколько людей приходится 1 скрытый носитель гена альбинизма.

Решение: частота q2–рецессивных гомозигот (аа) известна из условия задачи: q2=1:10000=0,0001, необходимо найти частоту гетерозиготных носителей Х=2pq. Зная q2, можно найти частоту рецессивного аллеля q:

qLine 6Line 7 = √q2 = √0,0001 = 0.01

Теперь, зная q, можно найти частоту доминантного аллеля p

p = 1-q = 1-0,01 = 0,99

Зная p и q, можно найти частоту гетерозиготных носителей Х=2pq

Х = 2pq=20,99 • 0,01 = 0,0198 = 0,02 или 2%.

Если 2 человека из 100 являются носителями аллельного гена альбинизма, тогда 1 носитель приходится на 50 человек.

Такие вычисления показывают чрезвычайно высокую частоту рецессивных генов в популяции при относительно редких случаях проявления наследственных заболеваний в фенотипе. Считается, что каждый человек имеет минимум 8 крайне нежелательных рецессивных генов, подавленных их нормальными аллелями.

В нацистской Германии проводились в жизнь "евгенические" программы (евгеника – наука об улучшении человеческой породы), основанные на физическом уничтожении лиц, страдающих наследственными болезнями. Несостоятельность таких способов улучшения человеческой породы ясна из закона Харди-Вайнберга. Поскольку большая часть нежелательных рецессивных генов скрыта в гетерозиготных организмах, то даже поголовное уничтожение всех выявленных рецессивных гомозигот практически не изменит числа больных в следующем поколении. Для тотального улучшения генофонда нации требуется уничтожение всех людей по обвинению в носительстве десятка дефектных генов.

Среди дефектных генов существуют летальные, которые в гомозиготном рецессивном состоянии приводят к гибели их обладателя, например, от образования внутренних спаек легких. Большая часть самопроизвольных абортов обусловлена именно летальными генами. Процент этих абортов не снижается по той же причине, что и частота наследственных болезней.

Часть дефектных генов определяет относительно стабильный процент лиц с атипичной реакцией на лекарственные средства.

На наше счастье, большая часть новых мутаций делает испорченные гены рецессивными по отношению к нормальным доминантным аллелям. Новые дефектные рецессивные гены долго (много поколений) не проявляются в популяции. Однако, в каждом следующем поколении суммируются старые и новые мутации. Возрастание такого генетического груза, пополняющегося особенно интенсивно в наше время (рост мутагенных факторов), ведет популяции к вырождению.

Генетическое вырождение людей усугубляется ослаблением естественного отбора в связи с успехами современной медицины. Альтернативой этому процессу могут быть только целенаправленные вмешательства в геном, но генная инженерия человека пока в зачаточном состоянии.

Адаптация вида (микроэволюция) – это процесс приспособления популяций к изменившимся условиям существования.

Новые сочетания генов, которые возникают преимущественно на базе комбинативной изменчивости при половом размножении, определяют уникальные фенотипы отдельных особей. Особи с неудачными (в данных условиях среды обитания) комбинациями генов и проявившимися испорченными генами, удаляются (элиминируются) из популяции, но это в соответствии с законом Харди-Вайнберга практически не снижает риск появления таких же особей в следующем поколении.

В реальных популяциях, имеющих ограниченные размеры, давление некоторых факторов среды обитания может приводить к исчезновению или значительному снижению части аллельных генов. Представьте аллельный ген, который встречается с частотой 0,01, т.е. у одного человека из 100. Если размер популяции достаточно велик (несколько миллионов особей), то случайная смерть такого человека, никак не скажется на генофонде этой популяции. Такие аллели будут тиражироваться в следующих поколениях. Если обладатель такого аллеля живет в замкнутой общине (несколько сотен), изолированной от человечества географически или социально, например, религиозный запрет на брак с иноверцами, то смерть такого человека будет означать для его популяции потерю аллеля и обеднение генофонда. Внешне это выражается в постепенном выравнивании фенотипов и росту числа больных наследственными заболеваниями.

История знает случаи вырождения династий египетских фараонов вследствие узости круга лиц, которым позволяли вступать в брак. Можно сказать, что фараоны жили в малочисленной популяции. В этом случае неизбежны близкородственные браки, ведущие к вырождению. Механизм такого вырождения сводится к увеличению коэффициента инбридинга.

Инбридинг, или близкородственное скрещивание, неизбежно сопровождается снижением жизнеспособности популяции – инбредной депрессией. При этом большая часть генов переходит в гомозиготное состояние, что манифестирует груз наследственных болезней (рис. 1).

Рисунок 1. Механизм инбредной депрессии.

отец-здоровый носитель мать-здоровый носитель

дефектных генов bce дефектных генов a g

A│ │A A│ │a

B│ │b B│ │B

C│ │c C│ │C

* * ────────────┬────────── * *

D│ │D │ D│ │D

E│ │e │ E│ │E

F│ │F ┌──────┴─────┐ F│ │F

G│ │G │ │ G│ │g

возможный генотип детей (оба здоровые

носители дефектных генов-a,b,c,e,g)

сын дочь

│A │a │A │a

│b │B │b │B

│c │C │c │C

инбридинг * * ─┐ + ┌─ * *

("кровосмешение") │D │D │ │ │D │D

│e │E │ │ │e │E

│F │F │ │A │A │ │F │F

│G │g │ │b │b │ │G │g

│ │c │c │

└ * * ┘

│D │D

│e │e

│F │F

│G │G

больной ребенок, имеющий

дефектные гены bb, cc, ee

в гомозиготном рецессивном

состоянии

Чем ближе родство лиц вступающих в брак, тем выше коэффициент инбридинга и риск рождения больных детей. Замкнутая ограниченная популяция неизбежно повышает средний коэффициент инбридинга, что ведет к ускорению темпов вырождения.

При отдаленном скрещивании – аутбридинге наблюдается прямо противоположная картина – гетерозис – или "гибридная сила". При гетерозисе заметно улучшается качество потомства. Если родители принадлежат к разным популяциям, то они имеют не совпадающий генетический груз. Другими словами, в первой популяции дрейфуют одни наследственные болезни, во второй – другие. При этом дефектные рецессивные аллели первой популяции разбавляются и маскируются нормальными доминирующими генами второй популяции.

Гетерозис и последующий инбридинг широко применяют при селекционной работе с растениями и животными. На первом этапе используют отдаленную гибридизацию (гетерозис), получают высококачественное потомство, а затем путем инбридинга переводят удачные сочетания генов в гомозиготное состояние. При этом, конечно, некоторые особи рождаются с наследственными заболеваниями и их отбраковывают. Из тех особей, которым "повезло" (полезные сочетания генов перешли в гомозиготное состояние, а наследственные болезни не проявились), формируют новую породу животных или сорт растений.

Аналогичные процессы происходят в любых реальных популяциях. При этом в зависимости от влияния факторов конкретной среды обитания популяции теряют разные аллельные гены и начинают значительно отличаться друг от друга. Постепенно различия становятся препятствием к свободному скрещиванию с особями других популяций. Если скрещивание происходит, то потомство оказывается бесплодным (мулы и лошаки – гибриды лошадей и ослов, лигры - гибриды тигров и львов). На субклеточном уровне это проявляется в невозможности нормальной конъюгации гомологичных хромосом при гаметогенезе гибридов. Прекращение свободного скрещивания с появлением плодовитого потомства означает образование нового вида. Лошади и ослы действительно могли иметь общих предков, но не более примитивного, а с большим спектром аллельных генов.

Помимо гипотезы о комбинативной изменчивости с выбраковкой наиболее испорченных особей, еще одним механизмом адаптации видов к изменяющимся условиям среды обитания считается "теория эволюции". Современный неодарвинизм – это оптимистическая гипотеза. Она основана на классических представлениях об отборе особей, имеющих новые. полезные приспособления, возникшие благодаря "положительным мутациям". Положительные мутации считают молекулярной основой прогрессивных изменений и эволюции в целом. Главной проблемой этой гипотезы является противоречие с математикой из-за крайне низкой вероятности случайного возникновения новых полезных изменений генотипа. Положения неодарвинизма имеют смысл только при допущении акта разумного целенаправленного вмешательства в генетический код.

Длительное время важнейшим аргументом в пользу быстрой и целесообразной эволюции признавался факт "привыкания" микроорганизмов к лекарственным препаратам – сульфаниламидам и антибиотикам. Опыт Ледербергов показал, что это не так: на чашки Петри с питательной средой, содержащей смертельную дозу антибиотика, специальным штампом внесли отпечатки нескольких тысяч колоний бактерий, которые ранее не встречали этот антибиотик и все "должны" были погибнуть. Однако, нашли штаммы бактерий, которые были устойчивы к антибиотику и дали рост колонии микроорганизмов. При достаточно большом числе исследуемых штаммов всегда находятся устойчивые к антибиотикам. Таким образом, доказана предадаптация микробов к антибиотикам. Постепенное снижение эффективности новых противомикробных средств объясняют постепенным отбором устойчивых и вымиранием чувствительных к антибиотикам микробных штаммов.

Опыт Ледербергов показал несостоятельность доказательства гипотезы о "положительных" мутациях на основе факта появления устойчивости бактерий к действию антибиотиков.

Блок дополнительной информации.

Полиплоидия.

В современной селекции для увеличения разнообразия исходного материала все шире используется явление полиплоидии. Полиплоидией называют явление кратного увеличения набора хромосом в ядрах клеток организмов. Растения, в соматических клетках которых содержится обычный двойной набор хромосом, называются диплоидными. Если у растений набор хромосом повторяется более двух раз, они являются полиплоидными. Большинство видов пшеницы имеют 28 или 42 хромосомы и относятся к полиплоидам, хотя известны диплоидные виды с 14 хромосомами (например, однозернянка). Среди видов табака и картофеля есть виды с 24, 48 и 72 хромосомами. Полиплоидия — довольно частое явление в природе, особенно у цветковых растений (злаковых, пасленовых, сложноцветных и др.). По внешним признакам полиплоиды обычно бывают более мощными, чем диплоиды, с рослыми крепкими стеблями, крупными листьями, цветками и семенами. Это объясняется тем, что у полиплоидов клетки значительно крупнее, чем у диплоидов.

Существуют два основных типа полиплоидов: автополиплоиды и аллополиплоиды. У автополиплоидов кратно увеличен набор хромосом, характерных для данного вида (пшеница, картофель — автополиплоиды). У аллополиплоидов в геноме суммированы наборы хромосом разных видов, так как образуются аллополиплоиды при межвидовых скрещиваниях. Установлено, что явление аллополиплоидии встречается и в природе, но в основном его вызывают искусственно, удваивая число хромосом у гибридов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]