
- •Биотехнология как наука и сфера производства. Предмет, цели и задачи биотехнологии, связь с фундаментальными дисциплинами.
- •Биообъекты как средство производства лечебных, реабилитационных, профилактических и диагностических средств. Классификация и общая характеристика биообъектов.
- •Макробиообъекты животного происхождения. Человек как донор и объект иммунизации. Млекопитающие, птицы, рептилии и др.
- •Биообъекты растительного происхождения. Дикорастущие растения и культуры растительных клеток.
- •Биообъекты - микроорганизмы. Основные группы получаемых биологически активных веществ.
- •Биообъекты - макромолекулы с ферментативной активностью. Использование в биотехнологических процессах.
- •Направления совершенствования биообъектов методами селекции и мутагенеза. Мутагены. Классификация. Характеристика. Механизм их действия.
- •Направления создания новых биообъектов методами генетической инженерии. Основные уровни генетической инженерии. Характеристика.
- •Клеточная инженерия и ее использование в создании микроорганизмов и клеток растений. Метод слияния протопластов.
- •Методы клеточной инженерии применительно к животным клеткам. Гибридомная технология и ее использование в биотехнологических процессах.
- •Инженерная энзимология и повышение эффективности биообъектов. Иммобилизированные биообъекты и их преимущества.
- •Иммобилизация биообъектов. Носители, используемые для иммобилизации.
- •Включение ферментов в волокна
- •Микрокапсулирование биообъектов как один из методов их иммобилизации. Микрокапсулы. Характеристика. Вспомогательные вещества. Виды оболочек.
- •Методы получения микрокапсул. Классификация. Характеристика. Технологические схемы производства.
- •16.Липосомы. Определение. Характеристика. Использование в биотехнологических процессах и для создания инновационных лекарственных форм.
- •17.Слагаемые технологического процесса. Структура биотехнологического производства.
- •Подготовительные стадии
- •Разделение жидкости и биомассы
- •Выделение продуктов биосинтеза
- •Очистка продукта
- •Концентрирование продукта
- •Подготовительные операции при использовании в производстве биообъектов микроуровня.
- •Питательные среды. Классификация. Компоненты питательных сред. Методы стерилизации.
- •20. Очистка и стерилизация технологического воздуха. Схема подготовки потока воздуха, подаваемого в ферментатор.
- •23.Характеристика биопроцессов в зависимости от целевых продуктов: первичные и вторичные метаболиты, биомасса как целевой продукт.
- •24.3Начение асептики в биотехнологических процессах. Методы стерилизации, используемые в биотехнологическом производстве.
- •25.Аппаратурное оснащение процессов выделения и очистки продуктов микробного синтеза.
- •Основные принципы культивирования микроорганизмов. Характеристика.
- •Брожение как разновидность биологического окисления. Спиртовое брожение
- •Получение спирта и других продуктов брожения с использованием микробиотехнологическихпроцессов.
- •Механизмы регуляции биосинтеза первичных метаболитов.
- •Биотехнология и проблемы экологии. Переработка жидких отходов.
- •Биологические, физико-химические и другие методы рекуперации и обезвреживания выбросов в атмосферу.
- •Инсулин. Источники получения. Рекомбинантный инсулин человека. Синтез а- и в- цепей. Биотехнологическое производство рекомбинантного инсулина.
- •40.Интерфероны. Классификация. Видоспецифичность интерферонов. Синтез различных классов интерферона человека. Производство рекомбинантных образцов интерферона.
- •41.Гормон роста человека. Механизм биологической активности и перспективы применения в медицинской практике. Конструирование продуцентов. Получение соматотропина.
- •42.Производство ферментных препаратов. Ферменты, используемые как лекарственные средства. Традиционные способы получения ферментных препаратов.
- •44.Микроорганизмы прокариоты - продуценты витамина в12 (пропионово-кислые бактерии и др.). Схема биосинтеза. Регуляция биосинтеза.
- •Производство моноклональных антител и использование соматических гибридов животных клеток. Гибридомы. Этапы производства моноклональных антител.
- •Подготовительные этапы перед проведением слияния
- •Слияние
- •Клонирование гибридомных клеток
- •Вакцины на основе рекомбинантных протективных антигенов и живых гибридных носителей. Технологические схемы производства вакцин и сывороток.
- •54.Области применения моноклональных антител. Характеристика.
- •Культуры растительных клеток. Методы культивирования. Лекарственные препараты, получаемые из каллусных и суспензионных культур.
- •Культуры животных клеток. Методы культивирования.
- •49..Антибиотики как биотехнологические продукты. Биологическая роль антибиотиков как вторичных метаболитов. Пути создания высокоактивных продуктов антибиотиков.
- •50.Биомедицинские технологии. Определение. Характеристика.
- •51.Препараты биогенных стимуляторов. Характеристика. Классификация. Технологические схемы производств.
- •Препараты из животного сырья. Характеристика. Классификация. Технологические схемы производства.
- •Краткая история развития биотехнологии и периоды развития биотехнологии. Характеристика. Биотехнология лекарственных средств.
- •54.Области применения моноклональных антител. Методы анализа, основанные на использовании моноклональных (поликлональных) антител.
- •56.Ферменты, используемые в генетической инженерии. Последовательность операций при включении чужеродного гена в векторную плазмиду. Перенос вектора с чужеродным геном в микробную клетку.
- •57.Цикл развития каллусных клеток, понятие дифферинцировки и дедифференцировки в основе каллусогенеза. Тотипотентность и ее значение.
- •Характеристика каллусных и суспензионных культур тканей растений. Понятие физиологической асинхронности и физиологической гетерогенности.
- •Синтез вторичных метаболитов с использованием культуры клеток и тканей растений.
- •62.70.Иммунобиотехнология. Диагностикумы, аллергены, бактериофаги, токсины и анотоксины. Характеристика и способы получения.
- •Нормофлоры (пробиотики, микробиотики, эубиотики) - препараты на основе живых культур микроорганизмов-симбионтов. Характеристика. Резидентная микрофлора жкт, причины дисбактериоза.
- •65.81 Под биоинформатикой обычно понимают использование компьютеров для решения
- •64.66.Протеомика и геномика. Характеристика. Значение для целей фармации.
- •68.Промышленные способы получения антибиотиков (общая схема).
- •69.Биомедицинские технологии. «Антисмысловые» нуклеиновые кислоты, пептидные факторы роста тканей и др. Биологические продукты новых поколений. Перспективы практического применения.
- •Пептидные факторы роста тканей
- •70. Иммунобиотехнология как один из разделов биотехнологии. Вакцины и сыворотки. Получение и области применения моноклональных антител
- •71.Интерлейкины. Механизм биологической активности. Перспективы практического применения.
- •73.Методы получения β- интерферона при культивировании фибропластов.
- •74.Биополимеры, характеристика, микробиологический метод получения.
- •75.Жирорастворимые витамины (эргостерин и витамины группы д). Продуценты и схема биосинтеза.
- •76.Каротиноиды и их классификация. Схема биосинтеза. Образование из каротина витамина а.
- •77.Проблемы трансформации стероидных структур. Микробиологический синтез гидрокортизона.
- •78.Фитогормоны, классификация, характеристика. Индукторы митотического цикла.
- •79.Иммуносупрессоры. Циклоспорин а-ингибитор иммунного ответа кальций нейрина. Применение втрансплантологии. Новые иммуносупрессоры природного присхождения.
16.Липосомы. Определение. Характеристика. Использование в биотехнологических процессах и для создания инновационных лекарственных форм.
Впервые липосомы были использованы для включения ферментов Дж. Сесса и Дж. Вайсманом (1970). Значительный вклад в развитие этого направления принадлежит также Г. Грегориадису. Сушествует несколько способов получения липосом, содержаших включенный фермент. В олном из них раствор липида (обычно лецитина) в органнческом растворителе (напрнмер. в хлороформе) упарнвается в вакууме, и липид остается на стенках колбы в виде тонкой пленки. Затем в колбу вносят водный раствор фермснта, встряхивают до полного удаления пленки липида со стенок колбы и оставляют иа некоторое времи. В полученной таким образом дисперсии липида происходит самопроизвольнос образование (самосборка) мультиламеллярных липосом, содержаших включенный фермент. Во избежанне окисления липида все операции необходимо проводить в атмосфере инертного газа.
В другом варианте метода раствор липида в органическом растворителе наслаивают на поверхность водного раствора фермента, после чего органический растворитель удаляют путем испарения в токе инертного газа, а образовавшуюся лнпидную пленку диспергируют в водном растооре. Недостаток этого способа состоит в том, что контакт с органическим растворителем может вызвать инактивацию фермента.
Для удалеиия невключившегося фермснта липосомы отделяют центрифугированием и ресуспендируют в водном буферном растворе. В случае моноламеллярных липосом, получаемых путем ультразвуковой обработки, разделение проводят методом гель-фильтрации на колонке.
Ферменты, иммобилизонанные путем включения в липосомы, применяются главным образом в медицинских целнх, а также при проведении фундаментальных исследований, поскольку такие системы близки к природным мембранам и их изучение может дать полезную информацию о ферментативных процессах в клетках.
Недавно был предложен новый способ иммобилизации ферментов путем включсния их в полимерные липосомы. Для получения липосом в этом случае используются липиды, модифицированные путем введения в их молекулу кратной связи. После включения фермента в липосомы, приготовленные из модифицированного липида обычным способом, их подвсргают облучению ультрафиолетовым светом в присутствии инициатора. При этом происходит полимернзацня мономерных молекул липида с обраэованием ковалентно сшитой замкнутой липидной бислойной мембраны. ГІолнмерные липосомы обладают гораздо более высокой стабильностью по сравнению с обычными.
17.Слагаемые технологического процесса. Структура биотехнологического производства.
Биотехнология как наука базируется на использовании биологических процессов в технике и промьпнленном производстве. Эти процессы - как совокупность последовательных действий специалистов направлены на достижение соответствуюпщх результатов при эксплуатации биообъектов.
Биотехнологические процесеы можно подразделить на биологические, биохимические и биоаналогичные. К первым относят те из ких, которые основываются на использовании акариот, прокариот и эукариот, вторые – на использовании ферментов и третьи (биоаналогичные) - на химическом синтезе или полусинтезе веществ, функционально близких или эквивалентных первичным или вторичным метаболитам живых организмов (получение производных пеницнллина и цефалоспорина, тетраниклина, нуклеиновых оснований и др.).
Процессы биотехнологии подразделяют по стадиям производства:
– подготовка оборудования и питательных сред,
– стерилизания.
– посев биообъекта,
– ферментация,
– выделение целевого продукта,
– очистка целевого продукта,
– сушка и упаковка целевого продукта,
Целевыми продуктами могут быть кормовые дрожжи, первичные и вторичные метабсдиты, Подготовка оборудования, питательных сред и все другие этапы получения целевого продукта различны по многим показателям. Процесс ферменгации осуществляется в герметизированных биореакторах.
После завершения ферментации отделяют либо клетки (клеточную массу), содержащие целевой продукт, либо жидкость. Культуральная жидкость содержит биообъект, недоиспользованные компоненты питательной среды, продукты метаболизма, включая ожидаемый конечный (целевой) продукт. Полученный разбавденный раствор подвергается концентрированию путем мембранной фильтрации и вакуум–упаривания.
Основной стадией является собственно биотехнологическая стадия, на которой с использованием того или иного биологического агента (микроорганизмов, изолированных клеток, ферментов или клеточных органелл) происходит преобразование сырья в тот или иной целевой продукт.
Обычно главной задачей биотехнологической стадии является получение определенного органического вещества.
Однако биотехнологическая стадия, как правило, включает в себя не только синтез новых органических соединений, но и ряд других биотехнологических процессов, перечисленных далее.
Ферментация — процесс, осуществляемый спомощью культивирования микроорганизмов.
Биотрансформация — процесс изменения химической структуры вещества под действием ферментативной активности клеток микроорганизмов или готовых ферментов. В этом процессе обыч-но не происходит накопления клеток микроорганизмов, а химическая структура вещества меняется незначительно. Вещество как бы уже в основном готово, биотрансформация осуществляет его химическую модификацию: добавляет или отнимает радикалы, гидроксильные ионы, дегидрирует и т. п.
Биокатализ — химические превращения вещества, протекающие с использованием биокатализаторов-ферментов.
Биоокисление — потребление загрязняющих веществ с помощью микроорганизмов или ассоциации микроорганизмов в аэробных условиях.
Метановое брожение — переработка органических отходов с помощью ассоциации метаногенных микроорганизмов в анаэробных условиях.
Биокомпостирование — снижение содержания вредных органических веществ ассоциацией микроорганизмов в твердых отходах, которым придана специальная взрыхленная структура для обеспечения доступа воздуха и равномерного увлажнения.
Биосорбция — сорбция вредных примесей из газов или жидкостей микроорганизмами, обычно закрепленными на специальных твердых носителях.
Бактериальное выщелачивание — процесс перевода нерастворимых в воде соединений металлов в растворенное состояние под действием специальных микроорганизмов.
Биодеградация — деструкция вредных соединений под воздействием микроорганизмов-биодеструкторов.
Обычно биотехнологическая стадия имеет в качестве выходных потоков один жидкостной поток и один газовый, иногда только один — жидкостной. В случае, если процесс протекает в твердой фазе (например, созревание сыра или биокомпостирование отхо-дов), выходом является поток переработанного твердого продукта.