
- •Федеральное агентство по здравоохранению и социальному развитию
- •I. Материалы ко второму этапу экзамена.
- •Тема №1:«дифференциальное и интегральное исчисления»
- •1. Если производные двух функций тождественно равны, то сами функции
- •26. Если f(X) является одной из первообразных для данной функции f(X), то самое общее выражение, для первообразной имеет вид
- •3. Уравнение, в которое неизвестная функция входит под знаком производной или дифференциала, классифицируется как
- •5. Дифференциальное уравнение относится к
- •6. Особым решением обыкновенного дифференциального уравнения первого порядка является ….
- •7. Общим решением дифференциального уравнения будет
- •11. Уравнение:является
- •16. Случайная величина х дискретного типа принимает два значения 0 и 1 с равными вероятностями. Определите вероятность того, что она примет значение 0
- •46. Дисперсия случайной величины х, имеющей равномерное распределение на отрезке [1, 9] равна
- •13. Задана функция плотности случайной величины, распределенной по нормальному закону:
- •25. Задана функция плотности вероятности случайной величины, распределенной по нормальному закону:
- •26. Статистические данные свидетельствуют о том, что вероятность рождения мальчика равна 0,516. Определите вероятность того, что новорожденный ребёнок окажется девочкой.
- •33. Случайная величина принимает шесть значений: 0, 1, 2, 3, 4, 5 с равными вероятностями. Определите математическое ожидание.
- •50. Применяемый метод лечения приводит к выздоровлению в 90% случаев. Определите вероятность того, что из 5 больных поправятся не менее 4.
- •51. Применяемый метод лечения приводит к выздоровлению в 80% случаев. Определите вероятность того, что из 5 больных поправятся 4.
- •61. Средняя плотность болезнетворных микробов в одном кубическом метре воздуха равна 100. Берут на пробу 2 дм3 воздуха. Найдите вероятность того, что в пробе будет обнаружен хотя бы один микроб.
- •Тема №3. «Теория вероятностей и мат.Статистика»
- •Производные и дифференциалы.
- •Частные производные. Применение дифференциального исчисления в теории ошибок измерений.
- •Скалярное поле. Производные по направлению. Градиент.
- •Интегралы. Неопределённые интегралы.
- •Определённые интегралы.
- •Дифференциальные уравнения.
- •Теория вероятностей и математическая статистика.
- •Справочные материалы
- •Оглавление
Оглавление
I. Материалы ко второму этапу экзамена. 4
II. Материалы к собеседованию. 35
Производные и дифференциалы. 35
Частные производные. Применение дифференциального исчисления в теории ошибок измерений. 37
Скалярное поле. Производные по направлению. Градиент. 39
Интегралы. 40
Неопределённые интегралы. 40
Определённые интегралы. 42
Дифференциальные уравнения. 43
Теория вероятностей и математическая статистика. 47
Ответы, указания, решения. 56
Тестовые задания. 56
Производные и дифференциалы. 56
Частные производные. Применение дифференциального исчисления в теории ошибок измерений. 63
Скалярное поле. Производные по направлению. Градиент. 65
Интегралы. 69
Неопределённые интегралы. 69
Определённые интегралы. 71
Дифференциальные уравнения. 75
Теория вероятностей и математическая статистика. 85
Справочные материалы 91
ОГЛАВЛЕНИЕ 93