Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
195
Добавлен:
31.03.2015
Размер:
391.68 Кб
Скачать

Уравнение движения материальной точки.

Сила – производная импульса по времени. F=dp/dt.

Более общая формулировка второго закона Ньютона: скорость изменения импульса материальной точки равна действующей на нее силе. Это выражение называется уравнением движения материальной точки.

Уравнение движения системы частиц Fcис=∑ni=1dpi/dt, где n – число частиц в системе, pi – импульс каждой частицы.

18. Силы взаимодействия. Третий закон Ньютона.

Взаимодействие между материальными точками (телами) определяется третьим законом Ньютона: всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки: F12= - F21, где F12 – сила, действующая на первую материальную точку со стороны второй; F21 – сила, действующая на вторую материальную точку со сторону первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы.

Третий закон Ньютона позволят осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек. Это следует из того, что и для системы материальных точек взаимодействие сводится к силам парного взаимодействия между материальными точками.

Третий закон Ньютона справедлив только в концепции дальнодействия.

19. Импульс системы частиц. Закон сохранения импульса.

Рассмотрим механическую систему, состоящую из n тел, масса и скорость которых соответственно равны m1, m2,..., mn и υ1, υ2,…, υn. Пусть F’1,F’2,...,F’n – равнодействующие внешних сил, действующих на каждое из этих тел, а F1,F2,...,Fn – равнодействующие внешних сил. Запишем второй закон Ньютона для каждого из n тел механической системы:

[d(m1υ1)]/dt=F’1+F1,

[d(m2υ2)]/dt=F’2+F2,

………………………

[d(mnυn)]/dt=F’n+Fn.

Складывая почленно эти уравнения, получим

[d(m1υ1+m2υ2+...+mnυn)]/dt=F’1+F’2+...+F’n+F1+F2+...+Fn.

Но так как геометрическая сумма внутренних сил механической системы по третьему закону Ньютона равна нулю, то

[d(m1υ1+m2υ2+...+mnυn)]/dt=F1+F2+...+Fn,

или

dp/dt=F1+F2+...+Fn,

где p=Σi=1nmiυi – импульс системы.

Таким образом, производная по времени от импульса механической системы равна геометрической сумме внешних сил, действующих на систему. В случае отсутствия внешних сил (рассматриваем замкнутую систему)

dp/dt=Σi=1n[d(miυi)]/dt=0,

т.е.

p= Σi=1nmiυi=const.

Это выражение и является законом сохранения импульса: импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени.

Этот закон носит универсальный характер, т.е. закон сохранения импульса – фундаментальный закон природы.

20. Момент импульса системы частиц. Закон сохранения момента импульса.

Моментом импульса системы частиц есть сумма моментов импульса отдельных частиц.

Момент импульса твёрдого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость:

Lz=Izω. (20.1.)

Продифференцируем уравнение (20.1.) по времени:

dLz/dt=(Izdω)/dt=Izε=Mz,

т.е.

dLz/dt= Mz.

Это выражение – ещё одна форма уравнения (закона) динамики вращательного движения твёрдого тела.

Можно показать, что имеет место векторное равенство

dL/dt=M.

В замкнутой системе момент внешних сил М=0 и dL/dt=0, откуда L=const. (20.2.)

Выражение (20.2.) представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени.

Закон сохранения момента импульса – фундаментальный закон природы. Он связан со свойством симметрии пространства – его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчёта (относительно поворота замкнутой системы в пространстве на любой угол).

Соседние файлы в папке Физика (1 семестр) (механика и термодинамика)