
- •1. Пространство и время. Механическое движение. Система отсчёта.
- •3. Угловая скорость. Угловое ускорение.
- •4. Принцип инерции (Первый закон Ньютона). Инерциальные системы отсчёта. Принцип относительности.
- •7. Понятие состояния в классической механике. Уравнение движения материальной точки.
- •Уравнение движения материальной точки.
- •8. Взаимодействия и силы.
- •Виды сил:
- •10. Момент импульса. Момент силы. Уравнение моментов.
- •11. Работа силы. Мощность.
- •12. Кинетическая энергия. Связь работы с изменением кинетической энергии.
- •13. Потенциальные и непотенциальные силы. Потенциальная энергия.
- •14. Связь потенциальной силы с градиентом потенциальной энергии.
- •17. Уравнения движения системы частиц.
- •Уравнение движения материальной точки.
- •18. Силы взаимодействия. Третий закон Ньютона.
- •19. Импульс системы частиц. Закон сохранения импульса.
- •20. Момент импульса системы частиц. Закон сохранения момента импульса.
- •21. Энергия взаимодействия системы частиц.
- •22. Механическая энергия системы частиц. Закон сохранения энергии в механике.
- •23. Центр инерции (центр масс). Уравнение поступательного движения системы.
- •24. Абсолютно твёрдое тело. Уравнение движения абсолютно твёрдого тела.
- •Уравнение движения абсолютно твёрдого тела
- •25. Вращение твёрдого тела относительно неподвижной оси. Уравнения движения.
- •28. Плоское движение.
- •29. Свободные оси. Гироскопы.
- •30. Колебания и характеризующие их величины. Собственные колебания.
- •31. Гармонический осциллятор. Собственные колебания гармонического осциллятора.
- •36. Апериодическое движение линейного осциллятора.
- •37. Вынужденные колебания линейного осциллятора при периодическом воздействии.
- •38. Амплитуда и фаза установившихся вынужденных колебаний. Резонанс.
- •Амплитуда вынужденных колебаний -
- •39. Ангармонический осциллятор.
- •40. Понятия о параметрических колебаниях и автоколебаниях.
- •43. Уравнение плоской бегущей волны. Волновые уравнения.
- •44. Синусоидальные волны. Фазовая скорость. Длина волны.
- •45. Принцип суперпозиции волн. Групповая скорость.
- •46. Механика жидкости и газов. Состояние сплошной среды и способы его описания.
- •47. Механика жидкости и газов. Уравнение непрерывности.
- •48. Движение идеальной жидкости. Стационарное течение.
- •49. Ламинарное течение вязкой жидкости. Турбулентность.
- •56. Распределение Максвелла.
- •57. Явления переноса. Диффузия.
- •58. Явление переноса. Теплопроводность.
- •59. Явление переноса. Вязкость.
- •60. Тепловые процессы.
- •61. Работа газа при изменении объёма. Теплота.
- •62. Первое начало термодинамики.
- •63. Теплоёмкость идеального газа.
- •64. Энтропия.
- •Второе начало термодинамики (формулировки).
- •68. Элементы релятивистской динамики. Релятивистский импульс и энергия.
68. Элементы релятивистской динамики. Релятивистский импульс и энергия.
Из принципа относительности следует, что математическая запись любого закона физики должна быть одинаковой во всех инерциальных системах отсчёта. Указанное условие называется условием ковариантности уравнений физических законов относительно преобразований Лоренца или, короче, условием лоренц-инвариантности.
В специальной теории относительности масса тела зависит от значения его скорости относительно инерциальной системы отсчёта
,
где m0 – масса рассматриваемого тела при υ=0. Её называют массой покоя тела, а m – массой движущегося тела или его релятивистской массой.
В релятивистской механике выполняется закон сохранения импульса: при любых процессах, происходящих в замкнутой системе, её импульс (т.е. геометрическая сумма произведений релятивистских масс всех частей этой системы на их скорости) не изменяется.
Сумма релятивистских масс соударяющихся тел до удара равна сумме их релятивистских масс после удара.
Основное уравнение релятивистской динамики имеет вид:
или
где
- импульс тела (материальной точки) в
релятивистской механике.
Скорость тела по отношению к любой инерциальной системе отсчёта не может быть равна скорости света в вакууме, а всегда меньше её.
Найдём выражение для кинетической энергии материальной точки в релятивистской механике. Приращение кинетической энергии материальной точки на элементарном перемещение dr равно работе, совершаемой на этом перемещение силой F, действующей на материальную точку: dWк=Fdr=FVdt, где V – скорость точки.
Из основного уравнения релятивистской динамики следует, что
поэтому
Так как VdV=υdυ и VV=υ2, то
С другой стороны
.
Таким образом, при изменении скорости материальной точки приращения её кинетической энергии и релятивистской массы пропорциональны друг другу:
.
(68.1)
Кинетическая энергия покоящейся точки равна нулю, а её релятивистская масса равна m0. Поэтому, проинтегрировав уравнение (68.1) по m от m0 до m, получим следующее выражение для кинетической энергии материальной точки:
.