
- •1. Пространство и время. Механическое движение. Система отсчёта.
- •3. Угловая скорость. Угловое ускорение.
- •4. Принцип инерции (Первый закон Ньютона). Инерциальные системы отсчёта. Принцип относительности.
- •7. Понятие состояния в классической механике. Уравнение движения материальной точки.
- •Уравнение движения материальной точки.
- •8. Взаимодействия и силы.
- •Виды сил:
- •10. Момент импульса. Момент силы. Уравнение моментов.
- •11. Работа силы. Мощность.
- •12. Кинетическая энергия. Связь работы с изменением кинетической энергии.
- •13. Потенциальные и непотенциальные силы. Потенциальная энергия.
- •14. Связь потенциальной силы с градиентом потенциальной энергии.
- •17. Уравнения движения системы частиц.
- •Уравнение движения материальной точки.
- •18. Силы взаимодействия. Третий закон Ньютона.
- •19. Импульс системы частиц. Закон сохранения импульса.
- •20. Момент импульса системы частиц. Закон сохранения момента импульса.
- •21. Энергия взаимодействия системы частиц.
- •22. Механическая энергия системы частиц. Закон сохранения энергии в механике.
- •23. Центр инерции (центр масс). Уравнение поступательного движения системы.
- •24. Абсолютно твёрдое тело. Уравнение движения абсолютно твёрдого тела.
- •Уравнение движения абсолютно твёрдого тела
- •25. Вращение твёрдого тела относительно неподвижной оси. Уравнения движения.
- •28. Плоское движение.
- •29. Свободные оси. Гироскопы.
- •30. Колебания и характеризующие их величины. Собственные колебания.
- •31. Гармонический осциллятор. Собственные колебания гармонического осциллятора.
- •36. Апериодическое движение линейного осциллятора.
- •37. Вынужденные колебания линейного осциллятора при периодическом воздействии.
- •38. Амплитуда и фаза установившихся вынужденных колебаний. Резонанс.
- •Амплитуда вынужденных колебаний -
- •39. Ангармонический осциллятор.
- •40. Понятия о параметрических колебаниях и автоколебаниях.
- •43. Уравнение плоской бегущей волны. Волновые уравнения.
- •44. Синусоидальные волны. Фазовая скорость. Длина волны.
- •45. Принцип суперпозиции волн. Групповая скорость.
- •46. Механика жидкости и газов. Состояние сплошной среды и способы его описания.
- •47. Механика жидкости и газов. Уравнение непрерывности.
- •48. Движение идеальной жидкости. Стационарное течение.
- •49. Ламинарное течение вязкой жидкости. Турбулентность.
- •56. Распределение Максвелла.
- •57. Явления переноса. Диффузия.
- •58. Явление переноса. Теплопроводность.
- •59. Явление переноса. Вязкость.
- •60. Тепловые процессы.
- •61. Работа газа при изменении объёма. Теплота.
- •62. Первое начало термодинамики.
- •63. Теплоёмкость идеального газа.
- •64. Энтропия.
- •Второе начало термодинамики (формулировки).
- •68. Элементы релятивистской динамики. Релятивистский импульс и энергия.
36. Апериодическое движение линейного осциллятора.
Дифференциальное уравнение свободных затухающих колебаний заряда в колебательном контуре имеет вид:
.
Используя формулу
,
и принимая коэффициент затухания
δ=R/(2L).
Уравнение затухающих колебаний в
колебательном контуре имеет вид:
.
Колебания заряда совершаются по закону:
Q=Qme-δtcos(ωt+φ)
с частотой
,
меньшей собственной частоты контура
.
При R=0
ω=ω0.
Логарифмический декремент затухания
определяется формулой
,
а добротность колебательного контура
.
При увеличении коэффициента затухания период затухающих колебаний растёт и при δ=ω0 обращается в бесконечность, т.е. движение перестаёт быть периодическим. В данном случае колеблющаяся величина асимптотически приближается к нулю, когда t→∞. Процесс не будет колебательным. Он называется апериодическим.
37. Вынужденные колебания линейного осциллятора при периодическом воздействии.
Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии. Такая компенсация возможна с помощью какого-либо периодически действующего фактора X(t), изменяющегося по гармоническому закону: X(t)=X0cosωt.
Переменная внешняя сила, приложенная к системе и вызывающая её вынужденные механические колебания называется вынуждающей, или возмущающей силой.
Если рассматривать механические колебания, то роль X(t) играет внешняя вынуждающая сила F=F0cosωt.
Если рассматривать электрический колебательный контур, то роль X(t) играет подводимая к контуру внешняя периодически изменяющаяся по гармоническому закону Э.Д.С. или переменное напряжение U=Umcosωt.
Колебания, возникающие под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся Э.Д.С., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями.
38. Амплитуда и фаза установившихся вынужденных колебаний. Резонанс.
Амплитуда вынужденных колебаний -
Сдвиг фаз между колебаниями и вынуждающей силой:
.
Рассмотрим зависимость амплитуды вынужденных колебаний от частоты.
Чтобы определить резонансную частоту ωрез – частоту, при которой амплитуда смещений (заряда) достигает максимума, - нужно найти максимум функции
.
Продифференцировав подкоренное выражение
по ω и прировняв к нулю, получим условие,
определяющее ωрез:
.
Следовательно резонансная частота
.
Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы (частоты вынуждающего переменного напряжения) к резонансной частоте называется резонансом (соответственно механическим или электрическим).
Подставляя формулу
в формулу
,
получим
.
(Выражение
для резонансной амплитуды)
39. Ангармонический осциллятор.
Гармоническим осциллятором называется система, совершающая колебания, описываемые уравнением вида: s”+ω02s=0. Колебания гармонического осциллятора являются важным примером периодического движения, и служит точной или приближённой моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, физический и математический маятники, колебательный контур.
Ангармонический осциллятор – это нелинейная и негармоническая колебательная система, совершающая колебания, не описываемые ни какими законами (синуса, косинуса и др.). Невозможно предсказать движение ангармонического осциллятора. Причинами возникновения ангармонических колебаний являются нелинейности колебательной системы (осциллятора). Например: нелинейность возвращающей силы, нелинейность силы трения.
Колебания ангармонического осциллятора не синусоидальны.
Примером ангармонического осциллятора может служить математический маятник при больших амплитудах или физический маятник с деформированной пружиной (сильно сжатой или сильно растянутой).
Ангармонические осцилляторы имеют не одно, а несколько состояний равновесия, относительно которых могут происходить различные колебания непредсказуемого поведения.