Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
814
Добавлен:
31.03.2015
Размер:
3.43 Mб
Скачать

Уравнение кривых в полярных координатах

Благодаря радиальной природе полярной системы координат, некоторые кривые могут быть достаточно просто описаны полярным уравнением, тогда как уравнение в прямоугольной системе координат были бы намного сложнее. Среди самых известных кривых: полярная роза, архимедова спираль, Лемниската, улитка Паскаля и кардиоида.

Окружность

Круг, заданный уравнением .

Общее уравнение окружности с центром в () и радиусом имеет вид:

Это уравнение может быть упрощено для частных случаев, например

является уравнением, определяющим окружность с центром в полюсе и радиусом .[15]

Прямая

Радиальные прямые (те, которые проходят через полюс) определяются уравнением

где  — угол, на который прямая отклоняется от полярной оси, то есть, где  — наклон прямой в прямоугольной системе координат. Нерадиальная прямая, перпендикулярно пересекает радиальную прямую в точке определяется уравнением

Полярная роза

Полярная роза задана уравнением .

Полярная роза — известная математическая кривая, похожая на цветок с лепестками. Она может быть определена простым уравнением в полярных координатах:

для произвольной постоянной (включая 0). Если  — целое число, то это уравнение будет определять розу с лепестками для нечётных , либо с лепестками для чётных . Если  — рациональное, но не целое, график, заданный уравнением, образует фигуру, подобную розе, но лепестки будут перекрываться. Розы с 2, 6, 10, 14 и т. д. лепестками этим уравнением определить невозможно. Переменная определяет длину лепестков.

Если считать, что радиус не может быть отрицательным, то при любом натуральном мы будем иметь - лепестковую розу. Таким образом, уравнение будет определять розу с двумя лепестками. С геометрической точки зрения радиус - это расстояние от полюса до точки и он не может быть отрицательным.

Спираль Архимеда

Одна из ветвей спирали Архимеда, задаваемая уравнением для .

Архимедова спираль названа в честь её изобретателя, древнегреческого математика Архимеда. Эту спираль можно определить с помощью простого полярного уравнения:

Изменения параметра приводят к повороту спирали, а параметра  — расстояния между витками, которое является константой для конкретной спирали. Спираль Архимеда имеет две ветви, одну для а другую для . Две ветви плавно соединяются в полюсе. Зеркальное отображение одной ветви относительно прямой, проходящей через угол 90°/270°, даст другую ветвь. Эта кривая интересна тем, что была описана в математической литературе одной из первых, после конического сечения, и лучше других определяется именно полярным уравнением.

Конические сечения

Эллипс.

Коническое сечение, один из полюсов которого находится в полюсе, а другой где-то на полярной оси (так, что малая полуось лежит вдоль полярной оси) задаётся уравнением:

где  — эксцентриситет, а  — фокальный параметр. Если , это уравнение определяет гиперболу; если , то параболу; если , то эллипс. Отдельным случаем является , определяющее окружность с радиусом .

86. Вычисление определенного интеграла. Применение его к вычислению площадей плоских фигур, длины дуги кривой.

Вычисление площадей и длин дуг кривых в декартовых координатах

Пусть на плоскости x0y задана область, ограниченная снизу кривой y=f1(x) , заданной в декартовых координатах, сверху – кривой  y=f2(x) , слева – прямой x=a (ее может и не быть, если f1(a)=f2(a) ), справа – прямой  x=b.

Исходя из геометрического смысла определенного интеграла, площадь этой области можно вычислить по формуле

Здесь не нужно заботиться, какая из функций и где положительная, а какая отрицательная. Если, например, f1(x)<0, то формула сама прибавит нужную площадь. Более сложные области всегда можно разбить так, чтобы выполнялись указанные условия.

Пусть на отрезке [a,b] уравнением  y=f(x) задана плоская кривая. Ее длина вычисляется по формуле

Пример 1 ::  Вычисление площадей и длин дуг в декартовых координатах

Вычислим площадь области, ограниченной кривыми   и длину границы этой области.

Вычисление площадей и длин дуг при параметрическом задании кривых

Если область на плоскости снизу ограничена кривой, заданной параметрически, то есть

при этом   x1()=b, x1()=b,  а сверху – кривой

Тогда площадь такой плоской фигуры вычисляем по формуле

Эта формула совпадает с формулой вычисления площади в декартовых координатах, если учесть, что x'(t)dt=dx.

Пусть кривая на плоскости задана параметрически

Тогда длина этой кривой вычисляется по формуле

Пример 2 ::  Вычисление площадей и длин дуг при параметрическом задании кривых.

Вычислим площадь фигуры, ограниченной кривыми   ,   . Вычислим длину дуги циклоиды  ,  .

Вычисление площадей и длин дуг кривых в полярных координатах

Когда кривая, ограничивающая область, задана в полярных координатах  =(), то площадь этой области вычисляем по формуле

Основная трудность в использовании этой формулы заключается в определении пределов интегрирования   ,  . Здесь нужно понимать, что кривая  =() определена только, если  >0. Поскольку в формуле присутствует 2 , то она учтет и не существующую площадь, когда . Решив уравнение ()=0 , найдем пределы интегрирования.

Если кривая, ограничивающая область, задана в полярных координатах  =(), то ее длина вычисляется по формуле

Пределы интегрирования определяются из тех же соображений, что и при вычислении площади.

Соседние файлы в папке Высшая математика (2 семестр)