
- •Свойства
- •[Править]Неравенство Коши — Буняковского
- •Нормальное уравнение плоскости.
- •Общее уравнение прямой - основные сведения.
- •Переход от общего уравнения прямой
- •13,14,15,16 В отдельном файле
- •17. Цилиндрические поверхности с образующей, параллельной одной из координатных осей.
- •18. Матрицы. Линейные операции над матрицами, их свойства.
- •19. Нелинейные операции над матрицами (умножение, транспонирование), их свойства. Умножение матриц
- •Транспонирование и эрмитово сопряжение
- •20. Обратная матрица. Теорема существования, единственность, свойства.
- •21. Матричные уравнения. Теорема существования и единственности решения.
- •22. Решение системы линейных уравнений матричным методом. Правило Крамера.
- •23. Ранг матрицы. Свойства ранга.
- •24. Линейная зависимость столбцов матрицы. Свойства Линейная зависимость и независимость строк (столбцов) матрицы
- •Свойства линейно зависимых и линейно независимых столбцов матриц
- •25. Базисный минор. Теорема о базисном миноре. Теорема о ранге.
- •26. Системы линейных уравнений. Теорема Кронекера - Капелли о совместимости систем.
- •27. Однородные системы линейных уравнений. Свойства их решений. Общее решение ослу.
- •28. Фундаментальная система решений ослу
- •29. Неоднородные системы линейных уравнений. Свойства их решений. Построение общего решения нслу.
- •30. Линейные пространства. Определение. Примеры, следствия из аксиом.
- •31. Линейная зависимость векторов линейного пространства. Свойства
- •32. Базис линейного пространства. Размерность
- •33. Единственность разложения векторов по базису. Координаты. Действия над векторами в координатной форме.
- •34. Изменение координат вектора при переходе к новому базису. Матрица перехода.
- •35. Евклидово пространство. Определение, примеры. Модуль вектора. Угол между векторами. Неравенство Коши-Буняковского.
- •36. Линейный оператор. Матрица линейного оператора. Изменение матрицы линейного оператора при переходе к новому базису.
- •37. Образ и ядро линейного оператора. Ранг линейного оператора.
- •38.В отдельном файле.
- •39. Собственные векторы и собственные значения линейного оператора. Их свойства
- •40. Последовательность. Предел последовательности. Ограниченные, неограниченные, бесконечно малые и бесконечно большие последовательности. Определение
- •[Править]Примеры
- •[Править]Операции над последовательностями
- •[Править]Подпоследовательности
- •[Править]Примеры
- •[Править]Свойства
- •[Править]Предельная точка последовательности
- •[Править]Предел последовательности
- •[Править]Некоторые виды последовательностей
- •[Править]Ограниченные и неограниченные последовательности
- •[Править]Критерий ограниченности числовой последовательности
- •[Править]Свойства ограниченных последовательностей
- •[Править]Бесконечно большие и бесконечно малые последовательности
- •[Править]Свойства бесконечно малых последовательностей
- •[Править]Сходящиеся и расходящиеся последовательности
- •[Править]Свойства сходящихся последовательностей
- •41. Понятие функции. Способы задания функции.
- •42. Предел функции в точке, в бесконечности. Геометрическая интерпретация. Определения и примеры.
- •43. Теоремы о пределах:
- •44. Непрерывные функции и их свойства:
- •Свойства Локальные
- •Глобальные
- •Теорема о сохранении знака для непрерывной функции
- •Доказательство
- •45. Первый замечательный предел. Следствия. Теорема о пределе суммы, произведения и частного.
- •46. Ограниченные функции и их свойства. Необходимое условие существования предела функции в точке.
- •47. Бесконечно малые функции, их свойства. Леммы
- •Леммы о бесконечно малых
- •48. Критерий существования предела функции в точке.
- •49. Бесконечно большие функции, связь с бесконечно малыми функциями.
- •50. Раскрытие неопределенностей. Второй замечательный предел.
- •51. Эквивалентные бесконечно малые функции. Таблица эквивалентных бесконечно малых функций.
- •52. Теорема о применении эквивалентных бесконечно малых к вычислению пределов.
- •3.2. Основные формулы эквивалентности бесконечно малых.
- •53. Односторонние пределы функции в точке. Односторонняя непрерывность функции в точке.
- •54. Точки разрыва функции и их классификация.
- •55. Свойства функций, непрерывных на отрезке.
- •56. Задачи, приводящие к понятию производной. Понятие производной. Геометрический и физический смысл производной.
- •1.1 Задачи, приводящие к понятию производной
- •, Если .
- •57. Дифференцируемость функции. Критерий дифференцируемости функции в точке.
- •57. Дифференцируемость функции. Критерий дифференцируемости функции в точке.
- •58. Производная сложной функции.
- •59. Дифференциал функции. Инвариантность формы записи первого дифференциала.
- •60. Обратная функция и ее производная.
- •60. Обратная функция и ее производная.
- •61. Правила дифференцирования.
- •63. Логарифмическое дифференцирование. Производная степенно-показательной функции.
- •5.4. Производная степенно-показательной функции
- •64. См. Отдельный файл.
- •65. Теоремы о среднем – Ферма, Ролля.
- •66. Теоремы о среднем – Лагранжа, Коши.
- •67. Дифференциалы высших порядков. Неинвариантность формы записи.
- •68. Правило Лопиталя. Раскрытие неопределенностей с использованием правила Лопиталя.
- •69. Формула Тейлора. Разложение функции по формуле Тейлора.
- •70. Монотонность функции. Условия монотонности.
- •71. Экстремумы функции. Необходимое условие существования экстремума.
- •72. Достаточные условия экстремума.
- •73. Выпуклость и вогнутость графика функции. Точки перегиба.
- •74. Асимптоты графика.
- •[Править]Виды асимптот графиков [править]Вертикальная
- •[Править]Горизонтальная
- •[Править]Наклонная
- •[Править]Нахождение асимптот
- •76. Метод замены переменных в неопределенном интеграле.
- •77. Интегрирование по частям в неопределенном интеграле. Классы функций, интегрируемых по частям.
- •78. Рациональные дроби. Разложение рациональных дробей на сумму простейших.
- •79. Интегрирование простейших рациональных дробей.
- •80. Интегрирование тригонометрических функций.
- •81. Интегрирование иррациональностей вида…
- •82. Интегрирование иррациональностей вида…
- •83. Понятие определенного интеграла, его геометрический смысл и свойства. Теорема о среднем.
- •84. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница.
- •85. Полярная система координат. Уравнения кривых в полярной системе координат.
- •Уравнение кривых в полярных координатах
- •Окружность
- •Полярная роза
- •Спираль Архимеда
- •Конические сечения
- •86. Вычисление определенного интеграла. Применение его к вычислению площадей плоских фигур, длины дуги кривой.
- •87. Вычисление объемов тел, объемов тел вращения.
- •88. Приложение определенного интеграла к задачам физики.
- •89. Несобственные интегралы I рода.
- •89. Несобственные интегралы I рода.
- •Несобственные интегралы I рода
- •Геометрический смысл несобственного интеграла I рода
- •Примеры
- •90. Несобственные интегралы II рода.
- •Геометрический смысл несобственных интегралов II рода
[Править]Виды асимптот графиков [править]Вертикальная
Вертикальная
асимптота — прямая вида при
условии существования предела
.
Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:
Замечание: обратите внимание на знаки бесконечностей в этих равенствах.
[Править]Горизонтальная
Горизонтальная
асимптота — прямая вида при
условии существования предела
.
[Править]Наклонная
Наклонная
асимптота — прямая вида при
условии существования пределов
Пример наклонной асимптоты
Замечание: функция может иметь не более двух наклонных(горизонтальных) асимптот!
Замечание:
Если хотя бы один из двух упомянутых
выше пределов не существует (или равен ),
то наклонной асимптоты при
(или
)
не существует!
Связь между наклонной и горизонтальной асимптотами
Если
при вычислении предела ,
то очевидно, что наклонная асимптота
совпадает с горизонтальной. Какова же
связь между этими двумя видами асимптот?
Дело
в том, что
горизонтальная асимптота является
частным случаем наклонной при ,
и из выше указанных замечаний следует,
что
Функция имеет или только одну наклонную асимптоту, или одну вертикальную асимптоту, или одну наклонную и одну вертикальную, или две наклонных, или две вертикальных, либо же вовсе не имеет асимптот.
Существование указанных в п. 1.) асимптот напрямую связано с существованием соответствующих пределов.
График функции с двумя горизонтальными асимптотами
[Править]Нахождение асимптот
[править]Порядок нахождения асимптот
Нахождение вертикальных асимптот.
Нахождение двух пределов
Нахождение двух пределов
:
если в
п. 2.), то
,
и предел
ищется
по формуле горизонтальной асимптоты,
.
[править]Наклонная асимптота — выделение целой части
Также наклонную асимптоту можно найти, выделив целую часть. Например:
Дана функция .
Разделив нацело числитель на знаменатель, получим:
.
При
,
,
то есть:
,
и является
искомым уравнением асимптоты.
75. первообразная и неопределенный интеграл. Основные свойства неопределенного интеграла.
Первообразная и неопределенный интеграл
Первообразной функцией для функции f(x) называется такая функция F(х), производная которой равна данной функции
F'(x) = f(x).
Обозначение
где F'(x) = f(x). Функция f(x) называется подынтегральной функцией, а выражение f(x)dx - подынтегральным выражением.
П.2. Свойства неопределенного интеграла
1°. Производная неопределенного интеграла равна подынтегральной функции; дифференциал от неопределенного интеграла равен подынтегральному выражению, т.е.
2°. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной, т.е.
3°. Постоянный множитель можно вынести из под знака интеграла, т.е. если k = const ≠ 0, то
4° . Неопределенный интеграл от алгебраической суммы двух функций равен алгебраической сумме интегралов от этих функций в отдельности.
76. Метод замены переменных в неопределенном интеграле.
Пусть .
Тогда
.
Здесьt(x) -
дифференцируемая монотонная
функция.
Док-во непосредственно
следует из формулы для производной
сложной функции. Перепишем первый
интеграл, заменив переменную x на t:
.
Это означает, что
.
Заменим независимую переменнуюt на
функцию t = t(x):
.
Следовательно, функцияF(t(x)) является
первообразной для произведения
,
или
.
При
решении задач замену переменной можно
выполнить двумя способами.
1.
Если в подынтегральной функции удаётся
сразу заметить оба сомножителя, иf(t(x)),
и
,
то замена переменной осуществляется
подведением множителя
под
знак дифференциала:
,
и задача сводится к вычислению интеграла
.
Например,
(задача
сведена к вычислению
,
гдеt =
cos x)
(аналогично
находится интеграл от
);
(задача
сведена к вычислению
,
гдеt =
sin x)
.
В более сложных задачах операция
подведения под знак дифференциала может
выполняться несколько раз:
(самое
неприятное в подынтегральной функции
- пятая степень арккотангенса под знаком
экспоненты; если дальше не найдётся
дифференциал этой функции, то интеграл,
возможно, взять вообще не удастся; в то
же время следующий множитель (arcctg4 x2)
- производная (с точностью до постоянного
множителя) степенной функции; затем
следуют производные (опять с точностью
до постоянных множителей)
функций arcctg x2 и x2 по
своим аргументам)
.
2. Замену
переменной можно осуществлять формальным
сведением подынтегрального выражения
к новой переменной. Так, в
имеет
смысл перейти к переменной (сделать
подстановку)t =
sin x.
Выражаем все множители подынтегрального
выражения через переменную t:
;
в результате
(возвращаемся
к исходной переменной)
.
Другие примеры:
.
Подынтегральная функция содержит два
множителя, ни один из которых не является
производной другого, поэтому подводить
их под знак дифференциала бесполезно.
Попытаемся ввести новую переменную,
такую, чтобы корни
извлеклись:
=
.
Рассмотрим
(интеграл
№19 изтабл.
10.3.неопределённых интегралов).
Здесь подынтегральная функция состоит
из единственного множителя; можно опять
попытаться сделать такую замену
переменной, чтобы корень извлёкся.
Структура подкоренного выражения
подсказывает эту замену:
(или
,
):
.
Интеграл свёлся к интегралу от квадрата
косинуса. При интегрировании чётных
степеней синуса и косинуса часто
применяются формулы, выражающие
и
через
косинус двойного угла:
.
Поэтому
.
Искусство
интегрирования в основном заключается
в умении видеть необходимые подстановки;
оно, как и любое другое искусство,
вырабатывается упражнениями. Для
основных классов функций требуемые
подстановки будут изучаться дальше,
здесь мы покажем, с помощью каких
преобразований были выведены формулы
17, 15, 20Таблицы
10.3.неопределённых интегралов:
17.
.
15.
.
20.
.
Второй интеграл элементарно сводится
к первому:
.