Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
816
Добавлен:
31.03.2015
Размер:
3.43 Mб
Скачать

, Если .

Если же, то касательная к кривой y = f(x) в точкебудет иметь вид , а нормаль 

57. Дифференцируемость функции. Критерий дифференцируемости функции в точке.

57. Дифференцируемость функции. Критерий дифференцируемости функции в точке.

Функция называетсядифференцируемой в точке , предельной для множестваE, если ее приращение Δf(x0), соответствующее приращению аргумента x, может быть представлено в виде

Δf(x0) = A(x0)(x - x0) + ω(x - x0),     (1)

где ω(x - x0) = о(x - x0) при x → x0.

Отображение , называетсядифференциалом функции f в точке x0, а величина A(x0)h - значением дифференциала в этой точке.

Для значения дифференциала функции f принято обозначение df или df(x0), если требуется знать, в какой именно точке он вычислен. Таким образом,

df(x0) = A(x0)h.

Разделив в (1) на x - x0 и устремив x к x0, получим A(x0) = f'(x0). Поэтому имеем

df(x0) = f'(x0)h.     (2)

Сопоставив (1) и (2), видим, что значение дифференциала df(x0) (при f'(x0) ≠ 0) есть главная часть приращения функции f в точке x0, линейная и однородная в то же время относительно приращения h = x - x0.

Критерий дифференцируемости функции

Для того чтобы функция f являлась дифференцируемой в данной точке x0, необходимо и достаточно, чтобы она имела в этой точке конечную производную.

58. Производная сложной функции.

Функции сложного вида не совсем корректно называть термином «сложная функция». К примеру, смотрится очень внушительно, но сложной эта функция не является, в отличие от.

В этой статье мы разберемся с понятием сложной функции, научимся выявлять ее в составе элементарных функций, дадим формулу нахождения ее производной и подробно рассмотрим решение характерных примеров.

При решении примеров будем постоянно использовать таблицу производных и правила дифференцирования, так что держите их перед глазами.

Сложная функция – это функция, аргументом которой также является функция.

С нашей точки зрения, это определение наиболее понятно. Условно можно обозначать какf(g(x)). То есть, g(x) как бы аргумент функции f(g(x)).

К примеру, пусть f – функция арктангенса, а g(x) = lnx есть функция натурального логарифма, тогда сложная функция f(g(x)) представляет собой arctg(lnx). Еще пример: f – функция возведения в четвертую степень, а - целая рациональная функция (смотритеклассификацию элементарных функций), тогда .

В свою очередь, g(x) также может быть сложной функцией. Например, . Условно такое выражение можно обозначить как. Здесьf – функция синуса, - функция извлечения квадратного корня,- дробная рациональная функция. Логично предположить, что степень вложенности функций может быть любым конечным натуральным числом.

Часто можно слышать, что сложную функцию называют композицией функций.

Формула нахождения производной сложной функции.

Пример.

Найти производную сложной функции .

Решение.

В данном примере f – функция возведения в квадрат, а g(x) = 2x+1 – линейная функция.

Вот подробное решение с использованием формулы производной сложной функции:

Давайте найдем эту производную, предварительно упростив вид исходной функции.

Следовательно,

Как видите, результаты совпадают.

Постарайтесь не путать, какая функция есть f, а какая g(x).

Поясним это примером на внимательность.

Пример.

Найти производные сложных функций и.

Решение.

В первом случае f – это функция возведения в квадрат, а g(x) – функция синуса, поэтому .

Во втором случае f – это функция синуса, а - степенная функция. Следовательно, по формуле произведения сложной функции имеем

Формула производной для функции имеет вид

Пример.

Продифференцировать функцию .

Решение.

В этом примере сложную функцию можно условно записать как , где- функция синуса, функция возведения в третью степень, функция логарифмирования по основаниюe, функция взятия арктангенса и линейная функция соответственноПо формуле производной сложной функции

Теперь находим

  1.  как производную синуса из таблицы производных:

  2.  - как производную степенной функции:

  3.  - как производную логарифмической функции:

  4.  - как производную арктангенса:

  5. При дифференцировании выносим двойку за знак производной и применяем формулу производной степенной функции с показателем равным единице:

Собираем воедино полученные промежуточные результаты:

Соседние файлы в папке Высшая математика (2 семестр)