Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
814
Добавлен:
31.03.2015
Размер:
3.43 Mб
Скачать

51. Эквивалентные бесконечно малые функции. Таблица эквивалентных бесконечно малых функций.

Функции и называют бесконечно малыми при , если и 

Функции и называют эквивалентными бесконечно малыми при , если 

Очень удобно пользоваться заменой эквивалентных бесконечно малых при нахождении пределов. Замена производится на основе таблицы.

Таблица эквивалентных бесконечно малых.

Пусть - бесконечно малая при .

Эквивалентность всех величин таблицы можно доказать, основываясь на равенстве .

52. Теорема о применении эквивалентных бесконечно малых к вычислению пределов.

При вычислении пределов часто применяется следующая Теорема. Предел отношения двух бесконечно малых (неопределенность ) равен пределу отношения двух других бесконечно малых, эквивалентных данным, т.е.

  

Отметим также: если , то.

 

3.2. Основные формулы эквивалентности бесконечно малых.

Известна формула первого замечательного предела:

  

Используя это равенство, получим

  

  

  

Отсюда получаем первую группу формул эквивалентности бесконечно малых.

  При 

. (1)

Вторая группа формул связана с логарифмической функцией.

Имеем: 

Если при , то

Получаем вторую группу формул:

 (2) 

 

Третья группа формул связана с показательной функцией. Имеем:

Отсюда 

Тогда 

  

  

Итак, третья группа формул эквивалентности бесконечно малых

  

  (3)

 

Четвертая группа формул связана со степенной функцией.

Имеем: 

  

  

  

Итак, четвертая группа формул эквивалентности бесконечно малых

 

 (4)

 

53. Односторонние пределы функции в точке. Односторонняя непрерывность функции в точке.

Определение. Предела слева (справа)

Число А(В) по определению называется пределом функции f(x) в точке х0 слева (справа), если

>0   >0 : x из x0-<x<x0 (x0<x<x0+)

               f(x)-A< (f(x)-B<),

при этом пишут:   

 

Пример.

 

Справедлив критерий 2 существования предела функции в точке.

Теорема.

Для того, чтобы у функции f(x) существовал предел при хх0 необходимо и достаточно, чтобы существовал левосторонний предел в т. х0, существовал правосторонний предел в т. х0 и они были бы равны между собой.

 

Определение. Непрерывности функции слева (справа).

Функция f(x) определенная в левосторонней окрестности т. х0 (или в правосторонней окрестности т.х0)  и в самой точке х0 называется непрерывной в т. х0 слева (справа), если

       >0 >0 : x из x0-<xx0 (x0x<x0+)

           f(x)-f(x0-0)< (f(x)-f(x0+0)<)

При этом значения f(x0-0) (f(x0+0)) называют значениями функции в точке х0 слева (справа).

 

Пример .

  f(-0)=0.

 

Теорема. Критерий непрерывности функции в точке.

Для того чтобы функция f(x) была непрерывной в т. х0 необходимо и достаточно, чтобы она была непрерывна слева в т. х0, справа в т. х0 и при этом выполнялось соотношение :

                 f(x0-0)=f(x0+0)=f(x0)

54. Точки разрыва функции и их классификация.

Определение. Разрывной функции в т. x0.

Функция f(x) не являющаяся непрерывной в т. x0 называется разрывной в т. x0.

При этом точки разрыва функции подразделяются на точки разрыва I рода и II рода.

 

Определение. Точка разрыва I рода.

Если у функции f(x)   и они конечны, то говорят, что точка x0- точка разрыва первого рода.

При этом, если , то говорят, что точкаx0- точка устранимого разрыва.

Если же , то говорят, что точкаx0- точка разрыва с конечным скачком.

 

-разрывная функция. 

 

Если положить -  то произойдет устранение разрыва и функция станет непрерывной.

У функции так как

- имеется конечный скачок.

 

 

ОпределениеТочка разрыва II рода.

Если у функции f(x) хотя бы один из односторонних пределов не существует или равен , то говорят, что т. х0- точка разрыва II рода.

Пример

Если устремить х к 0 разными способами, то получим различные значения пределов:

,  kN,   x0 , а  ;

 kN, x0 , а   ,

значит функция f(x) не имеет предела â т. х0=0, то есть т. х0 точка разрыва II рода.

Соседние файлы в папке Высшая математика (2 семестр)