
- •Основы экономики топливно-энергетического комплекса
- •Часть I
- •Москва Издательский дом мэи 2013
- •Введение
- •Глава 1. Роль топливно-энергетического комплекса в развитии национальной экономики
- •Основные характеристики энергетического хозяйства национальной экономики
- •Характеристика современного состояния тэк
- •Показатели тэк рф за 2003-2012 годы
- •Тэк в экономике России в 2008–2011 гг.
- •1.3. Система стратегического управления
- •1.4. Особенности отраслей тэк. Организационно-технологические особенности
- •Экономические особенности.
- •Вопросы для повторения
- •Глава 2. Классификация топливно-энергетических ресурсов, виды и основные характеристики
- •2.1. Запасы полезных ископаемых в мире и в России. Прогноз потребности энергетических ресурсов
- •Основные районы добычи газа
- •Основные районы добычи нефти
- •Основные районы добычи угля
- •Прогнозируемая количественная оценка потенциальных мировых запасов энергетических ресурсов по данным съезда Мирового энергетического конгресса (мирэк)
- •2.2. Характеристика топливно-энергетических ресурсов. Качественная оценка энергоресурсов
- •Низшая теплотворная способность топлива
- •Температура воспламенения тэр
- •Характеристика основных видов ископаемых топливно-энергетических ресурсов Нефть
- •Маркировка углей
- •Природный газ
- •Свойство находиться в твердом состоянии в земной коре:
- •2.3. Нетрадиционные виды ископаемого топлива Сланцевая нефть
- •Добыча сланцевой нефти
- •2.4. Количественная оценка мировых запасов и прогноз потребности энергетических ресурсов
- •Прогноз потребления первичных энергоресурсов в мире и по регионам за 2010–2035 гг. (млн. Т у.Т.)
- •Прогноз производства электроэнергии (нетто) в мире (млрд. КВт·ч)
- •Глава 3. Физические основы преобразования энергии
- •3.1. Физические основы преобразования энергии в теплоэнергетике
- •3.2. Принципиальные схемы тепловых электростанций
- •3.3. Газотурбинные установки
- •3.4. Парогазовые установки
- •Основные показатели, характеризующие технологии производства электроэнергии
- •3.5. Физические основы преобразования ядерной энергии. Принципиальная схема атомной электростанции
- •Осколок деления Осколок деления Осколок деления Медленные нейтроны Медленные нейтроны
- •1―Активная зона; 2―тепловыделяющие элементы (твэлы); 3―отражатель; 4―защита; 5―теплоноситель; 6―теплообменник; 7―паровая турбина; 8―конденсатор; 9―электрический генератор
- •3.6. Физические основы преобразования энергии в электрооборудовании. Принципиальная схема энергосистемы
- •Глава 4. Технологические основы производства и распределения топливно-энерегтических ресурсов
- •4.1. Технологическая структура электроэнергетики
- •4.2. Технологическая цепочка нефтегазовой промышленности. Разведка нефтегазовых месторождений
- •Поиск и разведка нефтегазовых месторождений
- •Геолого-экономический мониторинг
- •Технологический цикл нефтяной отрасли
- •Технологии нефтедобычи
- •Методы нефтедобычи
- •Способы добычи нефти
- •Технология и техника добычи нефти и газа
- •Использование скважин электроцентробежными насосами
- •Эксплуатация скважин с помощью штанговых глубинно-насосных установок (шгн). Наземное оборудование штанговых глубинонасосных установок.
- •Газлифтная эксплуатация скважин
- •Виды буровых скважин
- •Нефтепроводы
- •Насосные станции
- •Сбор и очистка
- •Система хранения нефти
- •Переработка нефти
- •Технологическая схема газовой отрасли
- •4.3. Технологическая цепочка угольной отрасли
- •Вопросы для повторения
- •Глава 5. История создания российских отраслей тэк
- •5.1. Закономерности технологического развития
- •Характеристики технологических укладов
- •Закономерности технологического развития
- •5.2. История электроэнергетической отрасли
- •5.3. Об истории российской нефти
- •5.4. История газовой отрасли
- •5.5. История угольной отрасли
- •Годовая добыча угля в ссср, млн т
- •Вопросы для повторения
- •Глава 6. Технологические инновации в отраслях тэк
- •6.1. Инновации в альтернативной энергетике
- •Петротермальная станция для автономного энергоснабжения потребителей
- •«Ветряные линзы»
- •Ветрогенератор без лопастей
- •Солнечная башня
- •Ночная солнечная электростанция
- •Гибридные электростанции
- •6.2. Инновационные технологии в нефтегазовом комплексе
- •Поиск и разведка месторождений нефти и газа
- •Разработка месторождений нефти и газа
- •Технология добычи нефти из обводненных месторождений
- •Транспорт нефти и газа
- •Нефтепереработка и газохимия
- •6.5. Инновационные технологии в сфере угольной генерации
- •6.6. Инновационные технологии в сфере газовой генерации
- •6.7. Инновационные технологии газификации
- •6.8 Производство синтетического жидкого топлива
- •6.9. Инновации в электросетевом комплексе
- •Ситуация в мире
- •Появление интеллектуальных сетей в России
- •Перспективы развития интеллектуальных сетей
- •Примеры эффективности внедрения
- •Вопросы для повторения
- •Библиографический список
- •Приложения
- •Этапы развития атомной энергетики России
- •Этапы развития гидроэнергетики России
- •Этапы развития теплоэнергетики России
- •Содержание
- •Часть I
3.4. Парогазовые установки
Парогазовая установка (ПГУ) – это установка, объединяющая в себе две ранее рассмотренных установки – газотурбинную, с высокой начальной температурой газов и паротурбинную, с низкой температурной отвода теплоты к холодному источнику. Такая комбинация позволяет снизить потери теплоты с уходящими газами газовых турбин, передав часть этой теплоты низкотемпературному циклу паротурбиной установки. Таким образом, мы получаем установку с высокой начальной температурой рабочего тела и низкой температурной отвода теплоты. Такая комбинация двух циклов позволяет получить КПД парогазовой установки порядка 60-61%. Схема парогазовой установки и ее термодинамический цикл изображены на рис. 3.7.
Рис. 3.7. Принципиальная тепловая схема ПГУ(а) и цикла Брайтона-Ренкина(б)
Здесь как газотурбинная, так и паротурбинная часть установки функционируют так, как было описано ранее, за исключением того, что сжигание топлива в парогазовой установке происходит только в камере сгорания ГТУ, а генерация и перегрев пара, который поступает в паровую турбину происходит в котле утилизаторе (КУ) за счет использования теплоты горячих газов, покидающих газовую турбину.
В таблице 3.1 приведены основные показатели, характеризующие три рассмотренные технологии производства электроэнергии.
Таблица 3.1
Основные показатели, характеризующие технологии производства электроэнергии
Показатель |
КЭС |
ГТУ |
ПГУ |
КПД, % |
38-40 |
30-35 |
52-61 |
Мощность, МВт |
до 1200 |
до 350 |
до 800 |
Максимальная начальная температура рабочего тела, °С |
620 |
1500 |
1
Осколок
деления |
Конечная температура рабочего тела, °С |
15-30 |
400-600 |
15-30 |
3.5. Физические основы преобразования ядерной энергии. Принципиальная схема атомной электростанции
По назначению и технологическому принципу действия атомные станции практически не отличаются от традиционных тепловых станций. Их существенное различие заключается, во-первых, в том, что на АЭС в отличие от ТЭС пар образуется не в котле, а в активной зоне реактора, а во-вторых, в том, что на АЭС используется ядерное топливо, в состав которого входят изотопы урана-235 (U-235) и урана-238 (U-238).
Особенностью технологического процесса на АЭС является также образование значительных количеств радиоактивных продуктов деления, в связи с чем атомные станции технически более сложны по сравнению с тепловыми станциями.
На рисунке 3.8 представлена схема реакции делении ядер урана. При реакции деления выделяется очень большая энергия. Основная часть энергии деления выделяется в виде кинетической энергии ядер-осколков. Замечательным и чрезвычайно важным свойством реакции деления является то, что в результате деления образуется несколько нейтронов, что создает условия для поддержания стационарной или развивающейся во времени цепной реакции деления ядер.
Действительно, если в среде, содержащей делящиеся ядра, один нейтрон вызывают реакцию деления, то образующиеся в результате реакции нейтроны могут с определенной вероятностью вызвать деление ядер, что может привести при соответствующих условиях к развитию неконтролируемого процесса деления.